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Abstract

We describe the task of Semantic Lexicon Expansion, in which a small seed
lexicon is expanded into a semantic lexicon that encompasses all terms in a
given document-set. For this task we introduce a bootstrapping algorithm,
that uses simple context-based extraction patterns to iteratively expand a seed
lexicon. This algorithm is compared to other bootstrapping algorithms and
its implementation is evaluated on a document-set of movie reviews. In this
evaluation we pay special attention to finding the minimum seed lexicon and
document-set size needed to start iterating.
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Chapter 1

Introduction

In the field of Information Extraction techniques are developed to automatically
retrieve structured information from unstructured documents. Machine Learn-
ing is often used to create extraction models from a set of example documents.
Such an extraction model, for example a set of extraction patterns or a Hidden
Markov Model, gives computer programs the ability to process unstructured
documents. For example this ability can then be used to provide structured
search, e.g. a job search website using a back-end that is filled with user up-
loaded resumes in Microsoft Word format, or to create a database from different
data sources, e.g. by scraping websites of local real-estate agencies to create a
national database of the housing market.

In both these examples Information Extraction is used to perform extraction
on the document level: the extraction model is used to retrieve information
from single documents. For other tasks the extraction can be performed on the
corpus level. The resumes contained in a job search website can be used to create
reports on the amount of education the average person has obtained. Another
task might be to create a dictionary of domain specific terms, a semantic lexicon.
Such a semantic lexicon, e.g. one containing instances of the semantic category
Weapon (see [ 1), could then for example be used to show the most
commonly used weapons in a set of newspapers, by looking at how often each
of the terms in the semantic lexicon occur in them.

The techniques used to create extraction models for tasks that work on the
document level might not be optimal for tasks on the corpus level. An extraction
model used to make a semantic lexicon does not for example need to make all
possible extractions in each of the documents, it only needs to extract each
lexical entry once. For tasks on the corpus-level we can use the fact that there
is a lot of redundant information in a large enough document-set, i.e. the same
terms occurs in multiple locations, in different contexts. The redundancy allows
for reuse of extractions, since information about the other contexts in which the
extraction occurs can be used in the extraction model. This use of redundancy
in the document-set is used in our bootstrapping algorithm.



1.1 Focus of the Research

We are interested in Information Extraction tasks at the corpus-level, and want
to show that it is possible to create algorithms for these tasks that work on
unannotated documents. With our research we design an algorithm for Se-
mantic Lexicon Expansion. This algorithm uses a bootstrapping approach, and
extraction patterns that make only use of the syntax in a small context window.
Our research focuses on finding out how the seed lexicon and the document-set
on which this algorithm is applied influence the resulting expanded seed lexicon.
This question is also answered for the scoring function, and other parameters
of our algorithm.

1.2 Organisation of the Thesis

In the remaining parts of this chapter we describe the differences in approaches
to Information Extraction on the document and on the corpus-level. We also
describe some other algorithms that use bootstrapping. Chapter 2 covers our
bootstrapping method and algorithm, and ends with a small example. In Chap-
ter 3 we apply our bootstrapping algorithm to a set of movie reviews. Chapter 4
extends our algorithm to make use of lexical- and semantic categories to create
more general extraction patterns. Chapter 5 gives conclusions and pointers on
further research.

1.3 Information Extraction

Most Information Extraction systems are document-based, they are designed
for tasks that need to extract all relevant pieces of information from each single
document that is given to them. Information Extraction systems can be created
manually, e.g. by creating hand written rules, or by Machine Learning. The
machine learning approach to create a document-based system is to collect a set
of documents from the domain for which the system is being build, to annotate
them and then to use machine learning on the annotated document-set to create
an extraction model. It is important that the annotation is done as completely
and correctly as possible since the learning algorithm uses the annotation layer
to create an extraction model.

For example, to create an extraction model that can be used to automatically
insert resumes into a database, we would collect a set of resumes, annotate every
piece of information to be extracted in those resumes and then apply the machine
learning algorithm.

A machine learning algorithm, such as Hidden Markov Models, Conditional
Random Fields or Wrapper Induction (see [2003] for
an overview) is then applied to the annotated training set to create an extraction
model. This extraction model is designed to correctly extract as many annotated
tokens in the training set as possible (in order to obtain a high recall) and to
make as few other extractions as possible (in order to keep precision high). The



annotation layer is assumed to be complete, so that non annotated tokens, or
tokens that are annotated as belonging to another semantic category can be
seen as negative examples.

There are some problems with this approach, and it might not be the best
approach for tasks at the corpus-level. One problem is that it needs large
amounts of annotated training documents in order to learn an extraction model.
Annotating these training documents has to be done manually, and is thus time
consuming and costly.

Two techniques techniques that are used to make the annotation task easier
are active learning and semi-supervised learning. When active learning tech-
niques are used, the extraction model is learned during the annotation phase
instead of after it. The extraction model is applied to the unannotated docu-
ments, and the document for which extraction model is the least certain of its
extractions is presented to the user for annotation. This enables the machine
learning algorithm to use less annotated documents to come to an extraction
model of the same quality, since it keeps documents that do not contain much
information for the machine learning algorithm from being annotated.

Semi-supervised learning combines the set of annotated documents with a
larger set of unannotated documents to come to an extraction model. For
example co-training (see [ ]) uses two machine learning
algorithms, that use a different view on the annotated document-set, to create
two document classifiers. Each document classifier is then used to classify a few
of the unannotated documents, after which these, now annotated, documents
are appended to the training-set of the other classifier. This is repeated for a
few iterations, allows the resulting classifiers to be based on more annotated
documents, and improves their quality.

Another problem is that annotation is an error-prone process. When learn-
ing an extraction model, the annotated portions of the text are seen as positive
examples, the rest of the text as negative examples. Therefore incorrect or
missed annotations have an impact on the quality of the extraction model. A
lot of semantic categories are quite simple to annotate (for example annotating
names or addresses), but other categories might need domain experts (for ex-
ample to annotate computer skills in resumes of a computer scientist, one might
need to know that J2EE is about the programming language Java and a Cisco
Certification is about Networking). Domain experts are hard to come by.

Although the approach of annotating a document-set and training an ex-
traction model works for information extraction from single documents, i.e. for
information extraction tasks at the document-level, there are other information
extraction tasks for which it is either too simple or too complex. For example
the approach is too simple to extract information from several linked documents
(e.g. to extract a list of computer scientists, their publications and contact in-
formation from a document set consisting of homepages and some bibliography
databases). For information extraction tasks at the corpus-level, such as se-
mantic lexicon expansion and ontology population the approach may be too
complex. For example to create a semantic lexicon it is not necessary to find
every occurrence of every possible term in the document-set, it is only neces-



sary to find enough occurrences of each term to be able to determine that the
term is an element of the lexicon, i.e. it is not necessary to make every correct
extraction.

1.4 Semantic Lexicon Expansion

Semantic categories are used to group certain terms, consisting of one or more
words, together. The terms that are grouped together refer to instances of a
certain class, for example a semantic category for the class Weapon could be
used to describe terms like M-60, Knife, AK-47, Pistol and perhaps the less
prototypical Bare Hands. A semantic lexicon is a dictionary of terms, labeled
with information about the semantic categories to which each term belongs to.
A small example semantic lexicon is displayed in Table 1.1.

Term Semantic Category
Car Bomb Weapon
AK-47 Weapon
Suicide Bomb Weapon
IED Weapon
Kalashnikov Weapon
Ansar al-Islam Terrorist Organization
Jama’at al-Tawhid wa’al-Jihad | Terrorist Organization
Jaish Ansar al-Sunna Terrorist Organization

Table 1.1: Example of a Semantic Lexicon

Multiple terms in a semantic category can refer to the same instance. For
example AK-47 and Kalashnikov are two different terms that refer to the same
sort of weapon. It is also possible for the same term to be used in several se-
mantic categories, terms are allowed to be ambiguous. For example the term
Batman might be used as to refer to the instance batman the movie, the charac-
ter batman and the role to play batman, and therefore belongs to three different
semantic categories, Movie Title, Super Hero and Role respectively.

Semantic Lexicons can be used in different ways. For example, to facilitate
Information Retrieval by expanding a search query with related terms, or by
giving an overview of the terms used in a domain. Automatically extracting a
semantic lexicon is useful for creating domain dependent semantic lexicons, and
is an Information Extraction task at the corpus-level.

Semantic Lexicon Expansion techniques try to create an expanded semantic
lexicon using a small example seed lexicon and a document-set. The expanded
semantic lexicon should encompass all terms, for all the semantic categories
defined in the seed lexicon, that are used in the document-set. Semantic Lexicon
Expansion is a subtask of Information Extraction that works on the corpus-
level. An algorithm used for semantic lexicon expansion does not need to be
able to extract every term from the expanded semantic lexicon used in a single



document. The algorithm only needs to be able to extract each term in enough
documents to be able to determine that it exists in the expanded semantic
lexicon. It should however be careful not to expand a category with ambiguous
terms that are only used in the document-set to refer to instances of other
categories. For example, the category Super Hero from the example above
should not be expanded with the term Batman if Batman is only used to refer
to movie titles.

A task closely related to Semantic Lexicon Expansion is Ontology Popula-
tion. Ontology Population techniques are used to find the instances belonging
to a certain class, or in its subtask Relation Instantiation to instantiate relations
between classes.

1.5 Bootstrapping Information Extraction

Bootstrapping is a form of semi-supervised learning. It uses a small list of pos-
itive examples, called the seed lexicon, and a set of unannotated documents
and tries to find an expansion, the expanded seed lexicon, for this list. Boot-
strapping uses multiple iterations to gradually find all terms of the expanded
semantic lexicon that are used in the document-set. To do this in each itera-
tion the algorithm seeks a small and reliable expansion of the seed lexicon, the
seed expansion, allowing the algorithm to use more positive examples in later
iterations.

An iteration starts with finding all the occurrences of the terms in the seed
lexicon in the unannotated document-set. These occurrences are then used to
create a set of extraction patterns. By applying the set of extraction patterns to
the document-set, extractions are found. An iteration ends with selecting a few
of the best extractions as the seed expansion to be used in the next iteration.

A few other algorithms that use bootstrapping techniques to perform in-
formation extraction exist. Our algorithm is mainly modeled on techniques
described in Multi-level bootstrapping and Basilisk. We describe two other al-
gorithms, that use bootstrapping for Relation Instantiation instead of Semantic
Lexicons Expansion. While describing these bootstrapping algorithms we will
choose what parts are to be used in our algorithm, and which is to be designed.

1.5.1 Multi-level Bootstrapping

Multi-level bootstrapping (see [ ]) uses a set of unanno-
tated training documents and a seed lexicon to learn both a set of extraction
patterns and an expanded seed lexicon. The use of bootstrapping is based on
the observation that extraction patterns can lead to new extractions, which in
turn can lead to new extraction patterns.

Before bootstrapping begins the algorithm exhaustively generates extraction
patterns for all the noun phrases in the document set. This is done using Au-
toSlog (see [ ]), an algorithm that uses CIRCUS, a sentence analyser,
and 15 heuristic rules to create extraction patterns. The resulting extraction



patterns are then stored in combination with their extractions. See Table 1.2
for a few of these heuristics and example extraction patterns.

Heuristic Example Extraction Pattern
<subj>passive-verb <EXTRACTION> was shown

verb infin. <dobj> tried to direct <EXTRACTION>
active-verb prep <np> | starred alongside <EXTRACTION>

Table 1.2: Some of the heuristics used by AutoSlog plus example extraction
patterns

Extractions are anchored by either a specific left or a specific right context.
This can be done because there exists a restriction on the extraction field: an
extraction should be recognized as a noun phrase by CIRCUS, and gives the
advantage of creating better patterns near the beginning and end of sentences.
We want our algorithm to be independent from sentence analysis, and strict
requirements on the extraction field, so our algorithm has to require both a
specific left and right context.

The advantage of creating all extraction patters in advance is that it can
be done offline, which keeps the main part, the bootstrapping loops, of the al-
gorithm fast. An disadvantage is that extractions are also made for extraction
patterns that can be known not to be helpful. As we do not want our extraction
patterns to be limited to patterns found by a tool such as CIRCUS, the num-
ber of possible extraction patterns make it prohibitive to create all extraction
patterns in advance. Our algorithm will therefore create its extraction patterns
during the bootstrapping loop.

Multi-level bootstrapping uses two bootstrapping loops. An inner bootstrap-
ping loop, called mutual bootstrapping, in which a set of extraction patterns
and the seed lexicon are expanded. And an outer bootstrapping loop, called
meta bootstrapping, that restarts the inner bootstrapping loop to improve the
quality of the set of extractions.

The inner bootstrapping loop starts with a seed lexicon, and an empty set of
extraction patterns. In each iteration the best extraction pattern is sought and
added to the set of extraction patterns, and all its iterations are used as a seed
expansion for the next iteration. Each extraction is stripped of leading articles,
common adjectives and numbers and a stop list is used to discard overly general
extractions.

To find the best extraction pattern, all patterns are scored according to the
RlogF metric

RlogF = R;logs(F5)

with R; = %, F; the number of different terms in the seed lexicon that pattern
1 extracts, and N; the total number of different terms that pattern ¢ extracts.

F;
PatternScore(P;) = ﬁlogg (Fy)
7

10



The RlogF metric is designed to find a balance between being reliable, R
is larger if a larger portion of its extractions are in the seed lexicon, and being
general, F' is larger for extraction patterns that extract more terms in the seed
lexicon.

The inner bootstrapping loop is normally ended after 10 iterations, i.e. after
10 extraction patterns have been added to the set of extraction patterns. Two
thresholds on the pattern score exist that make it possible to stop before, or
continue after iteration 10.

The inner bootstrapping loop selects as the seed expansion all the extractions
of the best extraction pattern. This assumes that all the extractions of that ex-
traction pattern are correct. A meta-bootstrapping loop of 50 iterations is used
to correct this often violated assumption by restarting the inner bootstrapping
loop using only the most reliable lexicon expansions. The best five extractions,
found during the inner bootstrapping loop, are added to the permanent seed
lexicon that is then used as input to restart the inner bootstrapping loop. To
select the best five extractions the extractions are scored according to:

M;
ExtractionScore(E;) = Z 1+ (0.01 * PatternScore(Py))
k=1

with M; the subset of the set of extraction patterns found in the inner
bootstrapping loop that extracts F;. This scoring function gives a higher score
to extractions if they are made by more extraction patterns, the Pattern Score
is used for tie-breaking.

In our algorithm we only want to focus on finding the best set of extractions,
finding a set of high quality extraction patterns is of secondary concern. This
allows us to use all extraction patterns to select the best extraction. To be able
to do so a different extraction scoring function is needed, simply being based
on the number of extraction patterns that make the extraction is not enough.
Taking the quality of the extraction patterns into consideration in the extraction
scoring function is more important in our algorithm, since we also want to use
extraction patterns of lesser quality.

1.5.2 Basilisk

A continuation of the Multi-level bootstrapping algorithm is found in Basilisk
and described in [2002] and [ ]. Multi-level boot-
strapping focusses on the quality of extraction patterns, all extractions of the
best pattern are used as the seed expansion for the next iteration, while Basilisk
focusses on the quality of extractions. Basilisk uses collective evidence over a
large set of extraction patterns instead of one extraction pattern to determine
the quality of an extraction. This removes the need of the correcting meta-
bootstrapping loop used by Multi-level bootstrapping.

In each iteration all extraction patterns are scored using the RlogF metric.
The best N extraction patterns, that are not yet depleted, are put into the
pattern pool. N has an initial value of 20 and is incremented after each iteration
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to renew the pattern pool. The extraction patterns in the pattern pool are used
to create extractions. Instead of using the entire noun phrase Basilisk collects
the head noun (e.g. film in the noun phrase My favourite film) of each extraction
into the candidate word pool. The terms in the candidate word pool are scored
according to:

Z;—Zl loga(Fj + 1)
P;

All extraction patterns, not only those in the pattern pool, are used to
calculcate the extraction score. P; is the number of extraction patterns able to
extract term ¢, and F} is the number of different terms in the seed lexicon that
pattern j extracts. The best five terms are used as the seed expansion.

Basilisk also extends Multi-level bootstrapping with the ability to use infor-
mation about other semantic categories in the semantic lexicon while looking
for an expansion of a semantic category. Basilisk assumes that an extraction
can only belong to a single semantic category, and keeps a semantic category

from expanding into other semantic categories. Two methods for doing this are
described:

AvgLog(term;) =

e Simple Conflict Resolution discards extractions found for a category which
already exist in the expanded seed lexicon of another category. If in the
same iteration an extraction is found for two or more categories, it is
discarded from the category for which it scored the least.

e Adapting the extraction scoring function to be based on all semantic cate-
gories instead of on only the semantic category for which an seed expansion
is sought. The extraction scoring function is changed to:

diff(wi, cq) = AvgLog(w;, cq) — maxpzq(AvgLog(w;, cp))

This makes an extraction being given a high score if there is a lot of
evidence relating it to the semantic category that is to be expanded, and
there is almost no evidence relating it to the other semantic categories in
the semantic lexicon.

We find the assumption of a term belonging to a single semantic category
too strict to be used in our algorithm. For example, the semantic category Actor
Name has a considerable overlap with the semantic category Director.

1.5.3 Relation Instantiation Based Methods

Learning an ontology consists of two parts, learning a data model and learning
a knowledge base. Ontology Population is used to fill the knowledge base for
a given data model. This task consists of finding instances for the concepts
described in the data model, and relating these instances using the relations
described in the data model. This latter task, a subtask of Ontology Population

12



called Relation Instantiation, tries to find, for a certain relation between two
classes, instance-pairs for which the relation holds. A Relation Instantiation
algorithm could for example be designed to find instances of the relation di-
rected by by finding relations in a semantic lexicon containing Mowvie Title’s and
Director’s.

In Relation Instantiation knowledge about the relation (e.g. is it a one-to-
many relation?, how many relation instances are there?) can be used when
finding new relations. For example if for a many-to-one relation such as directed
by a possible mowie, director-pair is considered it gives an enormous amount of
confidence if another mowie, director instance is already known for that partic-
ular director. On the other hand if another mowvie, director-pair was already
known for a particular movie knowing that it is a many-to-one relation can be
used to reject the relation instance under evaluation.

To expand a few example relation instances in an ontology alignment setting,
where all the instances of subject- and object class of the relation are known
in advance, [ | uses the excerpts obtained by querying
Google to come up with a set of patterns. Google is then used to search for
combinations of a pattern and a subject instance. If an object instance is found
in the excerpts, a relation instance is found. For tasks where not all instances
are known in advance, Hearst patterns are used to check if a term in the excerpt
occurs as an instance of the object class in the document-set.

In [ ] Google is used to find a document-set by querying
on an instance of the subject class. By applying an extraction method for
the instances of the object class, the algorithm finds which instances of the
object class occur in each document, after which the documents are given a
DocumentScore. This score is based on a few example relation instantiations
and the assumption that the relation is either well represented in a document
or not at all. For each of the candidate object instances a InstanceScore is
calculated that is based on the collective evidence over all documents. To select
which relation instances should be used [2007] describe using
a threshold on the InstanceScore and the use of a bootstrapping loop. The
bootstrapping loop selects the single best relation instance adds this to the
set of example relation instantiations and recalculates the DocumentScore and
the InstanceScore. Combined with a DropFactor that stops the bootstrapping
loop if the InstanceScore of the relation instance under consideration is too low,
bootstrapping is shown to eliminate the need for a domain- and task-specific
threshold.

Two approaches that can be used in settings where not all instances of the
subject- and object class of the relation are known in advance are described in
more detail below. These algorithms both use a bootstrapping loop, and a set
of context based extraction patterns to expand a set of relation instances.

1.5.3.1 DIPRE

DIPRE (see [ ]) expands a seed set of author, book title-pairs by apply-
ing a bootstrapping algorithm to the World Wide Web. The algorithm works
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directly with HTML pages, no tokenization or other analysis is used.

Finding the set of occurrences is done by searching the entire World Wide
Web for documents that contain an element of the seed set. An occurrence is
found if both the author and the book title of a seed element occur in the same
sentence. In addition to the context to the left, right and in the middle of the
author and book title, the url of the document is also stored.

Patterns are created by clustering the occurrences. First all occurrences with
the middle context and order of author and book title are grouped in a cluster.
For each of those clusters an extraction pattern is created that consists of the
longest common url-prefix, and the longest common context to the left and the
right. If an extraction pattern does not meet a certain amount of specificity (a
requirement based on the length of the pattern and a minimum seed support of
two), the url-prefix is used to cluster its occurrences into smaller clusters, for
which new extraction patterns are created. This continues until all clusters of
occurrences lead to an extraction pattern that meets the minimum specificity
requirement.

URL Pattern Text Pattern
www.sfl.net/locus/c.* <LI><B>title</B> by author (
dns.city-net.com/~Imann/awards/hugos/1984.html  <i>title</i> by author (
dolphin.upenn.edu/~dcummins/texts/sf-award.htm  author || title || (

Table 1.3: Extraction Patterns found by DIPRE, as shown in [ ]

DIPRE creates highly website-specific extraction patterns (see Table 1.3 for
a few examples), the url-prefix makes the pattern only apply to certain web-
pages. Web-pages that have the same url-prefix, are likely to have the same
layout, e.g. the web-pages on a web-site are often generated from one template.
This fact is used by DIPRE to make extraction patterns for specific layouts, and
to apply extraction patterns only to those documents that use a certain layout.
In Section 3.1 we show that each movie review, in our document-set, that is
written by the same reviewer often uses the same layout. Unfortunately there
is no feature, such as the url of a web-page, in our set of movie reviews that
can be used to see which layout is used in a document. This possibly forces our
algorithm to create less specific extraction patterns than DIPRE, which might
have a negative effect on the precision of the algorithm.

DIPRE does not evaluate the quality of the extraction patterns, it uses all
extractions of all extraction patterns as the seed expansion for the next iteration.

1.5.3.2 Snowhball

[2000] describes Snowball, an algorithm based on the
bootstrapping method used by DIPRE (see [ ). The algorithm is
applied to a corpus of news paper articles to expand a seed set of Organization,
Headquarter-pairs. Snowball expands the general method described in DIPRE

14



with pattern and extraction scoring functions.

Snowball applies a named-entity tagger, that is able to tag organizations,
locations and persons, to the document-set. An occurrence is found if in a
sentence both the Organization and Headquarter of a seed element are found
and the named-entity tagger tagged them accordingly.

The set of patterns is created by applying a clustering algorithm to the set
of occurrences. A pattern in Snowball consists of two named-entity tags (one
organization-tag and one location-tag) and a token weight vector for the left,
middle and right context. All patterns with seed support less than 7,, are
discarded.

The sentences in which both a organization and a location tag occur are
then matched to the set of patterns. An extraction is found if there exists a
minimum similarity 74, between the sentence and at least one of the patterns.

Extractions are scored using a confidence measure that is based on the con-
fidence of-, and similarity to each of the patterns. To calculate the pattern
confidence the fact that the organization, headquarter-relation is a many-to-one
relation is used. If the pattern extracts a organization, location-pair for an or-
ganization that was extracted in a previous iteration, the extraction is seen as
a positive one if the location is equal to the location in the previous iteration.
Otherwise it is seen as a negative extraction. The confidence of a pattern is
then calculated by:

Conf(P) = (P+ ¥

logQ(P)> . Wupdt + COTLfdd(P)' (1 - Wupdt)

with P the number of positive extractions, N the number of negative extrac-
tions, Conf,q(P) the confidence of the pattern in the previous iteration and
Wupdr as a parameter to control the learning rate.

All extractions with confidence above the user-definable threshold 7, are used
as the seed expansion.

We will not use a threshold such as 7 in our algorithm to determine which
extractions are to be used in the seed expansion. We will use a constant number
of extractions as we are more interested in the behaviour of our algorithm, than
we are in finding an optimum amount of extractions to add in each iteration.
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Chapter 2

Algorithm &
Implementation

We have created an algorithm that can be used for semantic lexicon expansion.
The algorithm is capable of expanding semantic lexicons that consist of terms
belonging to a single semantic category. If the semantic lexicon consists of
terms belonging to multiple semantic categories, the semantic lexicon can be
split into subsets of terms belonging to a single semantic category after which
our algorithm is applied to each of the subsets.

The input to the algorithm is a small seed lexicon and a large set of unanno-
tated documents. The algorithm has a few user definable parameters that can
be used to fine-tune the algorithm. They are described in Section 2.2.

A seed lexicon is used to initiate a bootstrapping loop. The more often the
terms in the seed lexicon occur in the document set, the more likely it becomes
that the algorithm finds a good set of extraction patterns and is able to make a
large amount of iterations. A larger or more prototypical seed lexicon, or a larger
document-set is therefore better than a smaller one. The use of bootstrapping
allows us to simplify our semantic lexicon expansion task from Section 1.4.
Instead of finding the entire set of correct expansions at once, we have to find
at least one expansion in each iteration. If in each iteration the algorithm
expands the seed lexicon with terms belonging to the semantic category, and
if the algorithm is able to keep iterating, after a number of iterations it will
have found the entire set of correct expansions. Another advantage of gradually
expanding the semantic lexicon, is that we use the expansion of the previous
iteration to find new patterns and extractions. This enables the algorithm to
find more extractions, and thus a larger expansion, than is possible if it would
try to find the expansion at once.

Our bootstrapping algorithm uses the same steps as the algorithms in Section
1.5, an overview of these steps is given in Figure 2.1. Each iteration tries to
find a set of occurrences of the seed lexicon in the document set, creates a set
of extraction patterns from them, and uses these extraction patterns to come
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Figure 2.1: Overview of the steps in our bootstrapping algorithm.

up with a set of extractions. At the end of an iteration, the seed lexicon gets
expanded with one, or a few, of the best extractions.

As in DIPRE, but in contrast with the other bootstrapping methods from
our background chapter, the extraction patterns only use the exact tokens in a
small context around the extraction field. An advantage of doing this is that it
removes the need for natural language processing of the document-set, such as
done by the sentence analyser CIRCUS used in both Multi-level bootstrapping
and Basilisk), and the named-entity tagger used in Snowball, which keeps the
algorithm language independent. Another advantage is that it enables our al-
gorithm to find extractions in semi-structured documents, something the other
algorithms from Section 1.5 are not able to do due to the nature of their ex-
traction patterns. As we describe Section in 3.1 the document-set used in our
experiments contain semi-structured documents.

A disadvantage of not using natural language processing is that our extrac-
tion patterns need to consist of both a left and a right context. We cannot
use the fact that an extraction should always be a noun phrase, as was done in
Multi-level bootstrapping and Basilisk, to determine the size of the extraction.
Demanding a specific left and right context, might make many of our extraction
patterns too specific, and makes it harder to create extraction patterns near the
begin or end of a sentence, as the extraction pattern also models a part of the
previous or next sentence.

It is possible that after a few iterations, the algorithm starts to diverge
from the semantic category that is to be expanded. This might happen for two
reasons:

e The terms belonging to one semantic category also appear in another se-
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mantic category. For example there is a lot of overlap between people
that are actors and movie directors. Since our algorithm creates extrac-
tion patterns for all occurrences of a term, regardless of the context in
which the term is used, ambiguous terms will lead to extraction patterns
for another semantic category. If there are enough ambiguous terms in
the seed lexicon, extraction patterns for another semantic category their
extractions might get used in the seed expansion. In effect such a seed
expansion will increase the scores of the ambiguous extraction patterns in
the next iteration, and the chance of diverging into adding terms belonging
to another semantic category even more.

e If a term that is very common in the document-set is used in the seed ex-
pansion, the algorithm is likely to diverge into adding other very common
terms in the next iterations. Such a term might be an ambiguous term
belonging to the semantic category that is expanded, such as for example
It or Go when expanding the category Movie Title, or simply a term that
occurs very often in the document-set. These very common terms might
get selected in the seed expansion because they are simply so common
that there are always some extraction patterns that extract them. In the
next iteration so many new occurrences, extraction patterns and extrac-
tions are found that the algorithm almost certainly will add another very
common term in the following iteration.

In our algorithm we introduce a Stop Condition to tackle the latter rea-
son. The Stop Condition is triggered and the algorithm stopped, if the number
of occurrences for one of the terms in the seed expansion surpasses a certain
threshold. The first reason for diverging is harder to solve, some possible ways
are described in Section 5.1 on future research.

Our algorithm assumes that the document set has been tokenized in advance,
and simply sees single spaces as token delimiters.

2.1 Steps in the Bootstrapping Loop

2.1.1 Locate Occurrences

The first step of our bootstrapping steps is to find a set of occurrences of the seed
lexicon. For each of the terms in the seed lexicon we look through the entire
document-set for an exact string match. Looking for the seeds is done case
insensitive. For example uppercase if often used for layout in our document-set
and we want our algorithm to find seeds regardless of case.

If a match is found, we create an occurrence by taking the match plus N
tokens to its left and IV tokens to its right. We do not strip case information
from the occurrences, as matching a pattern to the document-set is done case
sensitive.

No occurrences are found from matches that occur less than N tokens from
the beginning or end of the document. We do this because it is impossible to
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create an occurrence with a window of NV tokens from these matches, and we
want to create patterns using a window-size of exactly N tokens.

2.1.2 Create Patterns

An Extraction Pattern consists of three parts: a middle part that is used to
make the extraction and a left and a right part used for anchoring.

The left and the right part of a pattern both consist of N, the window-
size, tokens. The part that makes the extraction, the middle part, can make
extractions of one up to K tokens in size. This restriction on size exists for two
reasons:

o If the left and right part of a pattern can be found in a document, but
there exists a large amount of tokens between them, it is unlikely that
the extraction is a term of the semantic category. The more the number
of tokens moves away from the average number of tokens for terms of
the semantic category, the more likely it becomes that the extraction is
incorrect and the occurrence of the left and right part of the pattern is
merely accidental.

e In our implementation it is performance wise a lot cheaper to only make
small extractions. That way it does not need to keep looking for a match
of the right part to the end of the document, and can stop looking after
K tokens.

How to set K depends on the semantic category that is expanded by the
algorithm. It should be large enough to be able to extract the larger elements
of the semantic category, and small enough not to make extractions from co-
incidental pattern matches. Usually the user of our algorithm should be able
to give a fair estimate of the maximum number of tokens in the terms of the
semantic category that is to be expanded. For example to be able to extract
most cities a value for K of four tokens will suffice, but to be able to extract
names of universities a larger value for K should be used (if only because they
often contain a city).

Internally a pattern is represented as a regular expression. Extractions are
made by applying this regular expression to a document and finding all matches.
This regular expression is created by concatenating the left part of the pattern,
a minimal matching of one up to K tokens, and the right part of the pattern.

Since we use fairly simple patterns, creating the set of patterns from the set
of occurrences is straightforward. From each occurrence we create an extraction
pattern, unless that extraction pattern is already in our set of extraction pat-
terns. We do this because we do not want duplicate extraction patterns in our
set. As duplicate extraction patterns will make the same extractions, they will
not lead to more terms being found. In Subsection 2.1.4 we require that each
extraction must be made by at least two patterns to ensure that only reliable
extractions are used as the seed expansion. This requirement is useless if we
allow duplicate extraction patterns to exist in our set of patterns.
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2.1.3 Create Extractions

Finding all extractions of all of the extraction patterns is done by applying
each extraction pattern it to each of the documents in the document-set. If
both the left- and the right context of a pattern occur in a document, and
there are maximum K tokens between them an extraction is found. Looking for
extractions is done case sensitive.

Our implementation uses a few optimizations to speed up this process. First
we skip finding extractions for patterns that are constructed from only one term
in the seed lexicon. Since the extraction scoring function described in Section
2.1.4 below uses a seed support requirement of 2 terms, these patterns will never
contribute to the extraction score.

For those extraction patterns that do meet the seed support requirement
we try to decrease the number of documents in which we have to look for
extractions. This is done by an external Information Retrieval tool, Swish-e
(see swi) that retrieves only those documents in which the tokens of both the
left and right part of the pattern occur.

These two optimizations give our algorithm a boost in speed.

2.1.4 Score Extractions

All extractions that we have created in the previous step are scored. This
extraction score is used in the next step to select with which extractions we are
going to expand the seed lexicon.

The extraction scoring function is of high importance to our algorithm, if
it gives a high score to too many extractions that are not terms belonging to
the semantic category that is expanded the algorithm might diverge, but it can
only make use of very little information. Our algorithm first gives a pattern
score to all the extraction patterns, and uses these scores to score each of the
extractions.

Our algorithm, in contrast with Multi-level Bootstrapping (see

[ ]) makes extractions using all the extraction patterns, not only a few
high quality extraction patterns, which makes it important to take the quality
of the extraction patterns into account in the extraction scoring function.

Determining the quality of an extraction pattern is not a trivial task, since
it is not known which extractions are correct and which are incorrect. Only
extractions that occur in the seed lexicon are known to be correct, which gives
a minimum on the number of correct extractions. To determine the quality
of an extraction pattern we use the RlogF metric used in both Multi-level
Bootstrapping and Basilisk.

F;

With F; the number of different terms in the seed lexicon that the extrac-
tion pattern extracts, and N; the total number of different extractions that the

PatternScore(P;)
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extraction pattern makes. Extraction patterns are given a higher score by this
metric if:

e An extraction pattern is more reliable, i.e. if a larger portion of its ex-
tractions occur in the seed lexicon.

e An extraction pattern is more general, i.e. if it is able to make a larger
number of correct extractions, or if more terms of the seed lexicon are
extracted by the extraction pattern.

log2(F;) in the pattern scoring function implicitly defines a seed support
requirement of two seeds. Extraction patterns that only extract one of the terms
in the seed lexicon are given a score of zero. Using extraction patterns that are
able to extract only one term known to be correct is dangerous, and since the
algorithm makes multiple iterations, it is still possible for the extraction pattern
to be used in a later iteration (due to the seed lexicon being expanded).

To calculate the extraction score for an extraction, our extraction scoring
function uses the pattern scores of all the extraction patterns that extract the
extraction. The following function is used:

Mi PatternScore(Py) if |[M;| > 1

ExtractionS E;) = i
xtractionScore(F;) { 0 otherwise

Or expanded:

ExtractionScore(E;) = { g:kﬂ(Nk log2(Fi)) lftLMll > 1
otherwise

With M; the set of extraction patterns that extract the extraction. The
extraction scoring function basically takes the sum of the pattern scores of all
the extraction patterns able to make the extraction, with the exception that
extractions that are only made by one extraction pattern are scored zero.

We expect that this pattern support requirement of two extraction patterns
will significantly lower recall, but is necessary to keep the algorithm from di-
verging in later iterations.

In Subsection 3.5.3 we experiment with dropping the seed support and the
pattern support requirement.

2.1.5 Select Seed Expansion

Finding the seed expansion is done by appending the M unused extractions
with the highest extraction score to the seed lexicon. If an expansion for the
seed lexicon can be found we start with the next iteration. The algorithm stops
if no expansion can be found.

Instead of selecting a constant number of extractions as our seed expansion,
we could also select all extractions that score above a certain threshold, as is
done in Snowball. Although this would be a certain improvement, we are more
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interested in being as careful as possible. In our experiments we use the most
careful option of only adding one extraction to the seed lexicon of the next
iteration.

Our extraction scoring function leads to the following requirements to start
with the next iteration:

e The seed lexicon contains at least two elements, since extraction patterns
should have a seed support of at least two.

o At least one extraction that does not exist in the seed lexicon has been
made.

e This extraction has been made by at least two patterns, since extractions
should have a pattern support of at least two.

e Each of these patterns also extracted two elements of the seed lexicon.

Especially during the first iterations of the algorithm, when the seed lexicon
is still rather small, these requirements might not be met. This leads to the
algorithm stopping, although there may be plenty of correct extractions to select
an seed expansion from.

Although using a less strict extraction scoring function would alleviate this
problem, it also makes it more probable for the algorithm to diverge from the
semantic category that is being expanded. We designed the algorithm such that
it rather stops iterating prematurely rather than that it keeps iterating and
possibly diverges.

Our algorithm does not require a minimum extraction score for an extraction
to be used as the seed expansion. In later iterations, when the amount of unused
extractions decreases and the extraction scores get relatively lower (compared
to the extraction scores of the terms in the seed lexicon), such a minimum
can be used to stop the algorithm before the remaining usable, but probably
incorrect, extractions get used. Although we do not use such a minimum, the
Stop Condition might end the algorithm or the set of usable extractions might
get depleted before the problem of only having incorrect extractions left arises.

2.1.6 Stop Condition

Our algorithm uses a Stop Condition that is triggered if the algorithm starts
diverging into adding only too common terms. If a term, for which a striking
amount more occurrences than average can be found in the document-set, gets
added to the seed lexicon a large amount of new extraction patterns will be
found. Since its occurrences appear in more diverse contexts, the extractions
made by the extraction patterns are more diverse. The new extraction patterns
also have a large influence on the extraction scores, making it very likely for
another too common term to get the highest extraction score. This effect on
the occurrences, patterns and extractions only increases if that too common
term is selected as the seed expansion for the next iteration.
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Our Stop Condition is triggered if for more than O consecutive iterations, for
at least one term in the seed expansion more than P times the average number
of occurrences are found. By default O is set to 2 consecutive iterations to
allow correct terms that are very common, such as the movie title Go or I, to
be added to the seed lexicon if that doesn’t make the iteration process diverge.
P is by default set to a factor of 10.

Another option to stop the algorithm from diverging is to use a stop list
of terms that may not exist in the seed expansion. In pilot experiments done
during the implementation phase of our algorithm we found that it is hard to
think of enough terms for such a list, every-time we expanded the stop list a
new term appeared to be too common.

An obvious improvement to the Stop Condition is to skip too common words
from the seed expansion instead of to stop when too common words are selected
as the seed expansion. This and other options are described as future research
in Section 5.1, as our implementation can not be easily modified for this.

2.2 User Definable Parameters

The following parameters can be set by the user. They are described in more
detail in Section 2.1.

e N, the window-size. By default the algorithm uses a window-size of two
tokens. A different window-size can be used but we found out that, at
least for our document-set of movie reviews, using a window-size of only
one token led to patterns that are to general. Using a window-size of three
tokens led to patterns that were too specific and extracted only the seed
element for which it was made.

e M, the number of extractions (default 1) with which the seed lexicon is
expanded after each iteration.

e K, the number of tokens (default 6) a pattern can make extractions up
to.

e L, the maximum number of iterations (default 100) that the algorithm
should attempt to make. This setting can be used to keep running a large
number of experiments feasible.

e O and P, used by the Stop Condition. By default these are set to O = 2
and P = 10, so that the Stop Condition is triggered if for two consecutive
iterations, there exists a term in the seed expansion that has over 10 times
the average number of occurrences.

Apart from these parameters, the behaviour of the algorithm is also influ-
enced by the seed lexicon and the document-set.
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2.3 An Example

In this section we will illustrate our bootstrapping algorithm with an example
that spans two iterations. We will start with the a seed lexicon of two movie
titles (see Table 2.1) and a small document set. The tokenized pieces of text
from this document set relevant to our example are shown in Table 2.2. It should
be noted that each space splits two tokens, so that for example d; consists of
11 tokens (’s and ” are also tokens). In our example we use the following user
definable settings:

e N =2, a window-size of two tokens.

e M = 1, after each iteration we expand our seed lexicon with the single
best extraction.

e K = 6, the patterns will make extractions that are up to six tokens in
length.

e [ =2, our example stops after two iterations.

e O =2 P = 10, the Stop Condition is triggered if for two consecutive
iterations the seed expansion consists of an extraction that has over 10
times the average number of occurrences.

# | Term
s1 | Titanic
so | The Blair Witch Project

Table 2.1: Initial Seed Lexicon

2.3.1 First Iteration

The first iteration is started with a seed lexicon of two elements. After the first
iteration we have created an expanded seed lexicon, that is three elements large,
with which we start the second iteration.

2.3.1.1 Locate Occurrences

The set of occurrences in Table 2.3 is created by locating occurrences for all
the elements of the seed lexicon. First the occurrences o; and o, are found for
the seed element Titanic from text snippet di and dg in Table 2.2. We cannot
create an occurrence from dg. There is only one token left from the seed text,
and our window-size of two tokens makes it impossible to find occurrences with
a context of less than two tokens.

The rest of the occurrences are then found for the seed element The Blair
Witch Project. Because the search for seed elements is done case insensitive, we
find occurrence o4 from ds.
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# Text Snippet

dq ... It ’s similar to ” Titanic ” in that it realizes ...

do ...compared to 7 The Blair Witch Project ” in that the terror ...
ds ...I think that ” the blair witch project ” is a great film ...

dy ... Thus begins The Blair Witch Project , one of the best ...

ds .. Why do I say that ” The Blair Witch Project 7 is a great film? ...
dg ...states adamantly that ” Titanic ” is not a disaster film ...

d7 ..releases of 7 The Blair Witch Project ” and ” The Sixth Sense ” ...
dg ...real star of 7 The Matrix ” and the film ’s powerhouse ...

dy ” Titanic ” in my opinion ...

dio ... writer of 7 The Blair Witch Project ” and ” Altered ” ...

di1 ...second only to ” The Matrix ” in my opinion ...

dis ...shows that ” The Shawshank Redemption ” is overrated ...
di3 ... probably think that ” Episode 1 ” is marvelous . ...

dig ...paying homage to ” titanic . ” in casting ...

dis ..., and that ” The Matrix ” is a pretty ...

dig ...to learn that ” The Motorcycle Diaries ” is a ...

di7 ...is similar to ” The Shawshank Redemption ” in a lot ways ...
dig ...out of ” Minority Report 7 and 7 SimOne . ”

dig | ...midnight screening of ” The Texas Chainsaw Massacre ” and that ...
dao ...hope so . ” The Matrix ” may not have ...

Table 2.2: Relevant Snippets from our Example Document-set

# | Left Context Seed Element Right Context
01 to” Titanic 7 in

09 that ” Titanic 7 s

03 to” | The Blair Witch Project | ” in

04 that ” the blair witch project | 7 is

05 Thus begins | The Blair Witch Project | , one

06 that ” | The Blair Witch Project | ” is

o7 of 7 | The Blair Witch Project | ” and

08 of 7 | The Blair Witch Project | ” and

Table 2.3: The Set of Occurrences Found in Iteration 1
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2.3.1.2 Create Patterns

From the set of occurrences in Table 2.3 the set of patterns in Table 2.4 is
created. The columns F;, N; and fh loga(F;) are used in the calculation of the
extraction score. In this step we calculate F;, the number of different elements
of the seed lexicon that a pattern extracts.

For each occurrence we try to create a pattern. The first pattern, p;, has
been created by occurrence o;. When the algorithm tries to create a pattern for
occurrence o3 it notices that the pattern would be exactly the same as p; and
links occurrence oz to pattern p;. F; for pattern p; is increased, since the seed
element The Blair Witch Project is not yet known to be extracted by p;.

For occurrences o4, 0g and og such linking also occurs. For occurrences og
and og F; is not increased. Pattern py and p4 are already known to extract the

seed element The Blair Witch Project.

+# Left | Right | F; | IV; }3 log, (F;)
D1 to” | 7in 2 5 0.40

D2 that 7 | 7 is 2 6 0.33

p3 | thus begins | , one 1 - 0

D4 of 7 | 7 and 1 - 0

Table 2.4: The Set of Patterns Found in Iteration 1

2.3.1.3 Create Extractions

From the set of patterns in Table 2.4 the set of extractions in Table 2.5 are
created.

Pattern p3 and py are created from only one occurrence (p3 was created from
05), or from occurrences about only one seed element (p4 is created from o7 and
og both about The Blair Witch Project). For these patterns we do not need to
find the extractions as they do not contribute to the extraction score.

# | Extraction p1 | p2 | Score
e; | the blair witch project v |V 0.73
ey | titanic vV |V 0.73
e3 | the matrix v |V 0.73
e4 | the shawshank redemption | v | v 0.73
es | titanic. v 0
e¢ | episode 1 v 0
e7 | the motorcycle diaries v 0

Table 2.5: The Set of Extractions Found in Iteration 1
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2.3.1.4 Score Extractions

The extraction score in Table 2.5 is calculated. Extractions ey, es, e3 and e4 are
extracted by pattern p; and ps. They get scored 0.40 4+ 0.33 = 0.73, the sum of
the Pattern score of pattern p; and ps.

Extractions es, eg and e; are scored 0, as they are only extracted by one
pattern.

2.3.1.5 Select Seed Expansion

The seed lexicon is then expanded with the best M extractions. Since we use
M =1 in this example and our experiments, we add the single best extraction
not yet in the seed lexicon.

In our example two extractions, the matrixz and the shawshank redemption,
are scored the highest. The extraction the matriz is randomly picked as the
seed expansion.

2.3.1.6 Stop Condition

The Stop Condition is triggered if for two consecutive iterations the seed ex-
pansion consists of an extraction that has over 10 times the average number
of occurrences. Since this is the first iteration, the Stop Condition will not be
triggered.

2.3.2 Second Iteration

With the Seed Lexicon expanded with the matriz the second iteration gets
started.

2.3.2.1 Locate Occurrences

Since an element never gets removed from the seed lexicon, the seed lexicon
only gets expanded, and the document set never changes we can reuse the set
of occurrences found in iteration 1. By expanding this set of occurrences with
the occurrences found for our new seed element the matriz (see Table 2.6) we
find the set of occurrences for iteration 2.

# | Left Context | Seed Element | Right Context

09 of ” The Matrix ” and

019 to” The Matrix 7 in
011 that ” The Matrix 7 is
011 L7 The Matrix 7 may

Table 2.6: Additions to the Set of Occurrences in Iteration 2
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2.3.2.2 Create Patterns

The new set of patterns in Table 2.7 is created from the expanded set of occur-
rences.

Occurrence og, 019 and o017 lead to patterns already known in iteration 1. For
those patterns F; gets increased, which in case of pattern py, means that it will
be used to create extractions with.

Occurrence 011 leads to the new pattern ps. Since this pattern only extracts
one element of the Seed Lexicon it will not yet be used to create extractions
with. Just as what happened with pattern p,4 in this iteration, pattern ps might
get used for extraction in a later iteration.

# Left | Right | F; | INV; f, logs (F)
p1 to” | 7in 3 5 0.95

D2 that 7 | 7 is 3 6 0.79

ps | thus begins | , one 1 - 0

Dy of 7 | 7 and 2 4 0.5

D5 .7 7 may | 1 - 0

Table 2.7: The Set of Patterns Found in Iteration 2

2.3.2.3 Create Extractions

In addition to pattern p; and ps used in iteration 1, we now also use pattern py
to create the set of extractions shown in Table 2.8. The set of extractions gets
expanded with two new extractions: eg and eg.

# | Extraction P1 | P2 | Pa | Score
ey | the blair witch project vV | V|V 2.24
es | titanic v |V 1.74
e3 | the matrix vV | V|V 2.24
e4 | the shawshank redemption v | v 1.74
es | titanic. v 0
eg | episode 1 v 0
e7 | the motorcycle diaries v 0
es | minority report v 0
eg | the texas chainsaw massacre v 0

Table 2.8: The Set of Extractions Found in Iteration 2

2.3.2.4 Score Extractions

All the extraction scores are recalculated as shown in Table 2.8. Because pat-
terns p; and po can extract more elements of the Seed Lexicon than in iteration
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1, their pattern score has been increased. This also means that the extraction
scores of extractions ej, es, e3 and e4 get increased.

Since extractions e; and ez now also get extracted by pattern py their score
is increased even more.

2.3.2.5 Select Seed Expansion

Only The Shawshank Redemption, extraction ey4, is left to be used for the ex-
pansion of the Seed Lexicon. The other extractions are either already in the
Seed Lexicon or scored zero.

2.3.2.6 Stop Condition

The Stop Condition is triggered if for two consecutive iterations the seed ex-
pansion consists of an extraction that has over 10 times the average number of
occurrences. In the first iteration the seed expansion consisted of The Matriz
for which 4 occurrences could be found. The average number of occurrences
before that iteration was also 4, so the Stop Condition will not trigger.

If in the next iteration no new extraction is found that is made by at least
two patterns, either by finding a new pattern that makes es, eg, e7, eg or eg in
Table 2.8 or by finding two new patterns that make the same new extraction,
the algorithm will stop.

In this case the algorithm already stops after this iteration, L was set to
make a maximum of two iterations. The final Seed Lexicon consists of the
initial two elements of the Seed Lexicon, The Blair Witch Project and Titanic
and got expanded with The Matriz and The Shawshank Redemption.
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Chapter 3

Experiments & Results

With our experiments we try to describe the behaviour of our bootstrapping al-
gorithm. By looking at the effect of varying the two most important factors, the
seed lexicon and the document set, we find a baseline setting for the algorithm.
This baseline setting is then used in experiments where we vary other user de-
finable parameters and find seed expansions for other semantic categories. In
all our experiments we use a document-set of movie reviews.

3.1 Movie Review Document-set

The document-sets used in our experiments consist of movie reviews. We have
picked this domain because there is an enormous amount of movie reviews avail-
able on the internet, and because the semantic categories in them have inter-
esting properties.

The document-sets in our experiments are subsets from a collection of 40,000
movie reviews. This collection consists of articles that we posted to the Usenet
newsgroup rec.arts.movies.reviews between 1987 and 2005. This newsgroup
is archived by the Internet Movie Database (see [2,b]). IMDB provides a
link to the reviewed movie in its database, and the name of the reviewer next
to a lot of the archived articles.

The collection used in our experiments is a copy of this archive, and has
been partially scraped by [ ] in an experiment on sentimentality
analysis. In order to restore the original newsgroup articles, we have removed
the HTML markup added by IMDB, and converted the articles to plain text. To
the plain text we then applied a simple tokenization algorithm, to make them
usable by our bootstrapping algorithm The tokenization algorithm is very simple
(as we explain in Section 3.3.4 it is too simple), it first replaces all strings of
whitespace with a single space character, and then places all non alphanumeric
characters at the beginning or ending of a token into a new token.

The movie reviews are free text, with some parts being more semi-structured.
Most of the reviewers use a distinctive layout style, such that the articles often
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consists an unstructured body that reviews a movie accompanied by a header
and/or footer that is more structured. The header/footer is then used to list
the title, writers, directors and actors or summarize the movie. For example one
reviewer always appends his reviews with a footer that lists his recently reviewed
movies and how he rated them. Another reviewer almost always writes movie
titles capitalised.

Several semantic categories can be found in this set of movie reviews. For
example Movie Title, Actor Name, Writer, Director, Certification and Running
Time. We will experiment with Movie Title, Actor Name and Certification.

To get an idea of the amount of information in our collection of movie re-
views, we have manually annotated a document-set of 250 reviews. In these
reviews we counted a total number of 871 different movie titles, 1131 different
actors/actresses and 12 different certifications. These numbers will not increase
linearly for larger document-set. Due to the fact that many movies are re-
viewed multiple times and that almost all actors play in more than one movie,
a document-set of 500 reviews will contain less than twice the number of movie
titles or actor names than a document-set of 250 reviews. This effect is even
stronger for Certification than it is for Movie Title or Actor Name, as the num-
ber of different certifications is very low.

3.2 Baseline Experiments

The two most important factors in our bootstrapping algorithm are the seed
lexicon and the document-set. In our baseline experiments, we try to determine
the effect of using different seed lexicons and document-sets. The results of
these experiments will tell us how the size of the seed lexicon and the size
of the document set influences the resulting seed expansion, and what sizes
are the minimum for the algorithm to perform reasonable well. We will use
these settings as the default setting for our later experiments. In all of our
baseline experiments we let the algorithm expand a seed lexicon of Movie Title’s,
since, as described in Section 3.2.1, for this semantic category we have a way of
automatically evaluating the resulting seed expansion.

To see the effect of the seed lexicon we vary the size of the seed lexicon and
which seed elements are in it. The same is done for our document set, and for
all combinations of seed lexicon and document set we perform an experiment.
We expect that the performance of the algorithm is influenced in the following
way:

e Both the seed lexicon and document set can be too small for the algorithm
to be able to expand the seed lexicon in the first iterations. In those cases
there are not enough occurrences, patterns and extractions found to get
the algorithm to enlarge the set of patterns.

e Using a larger seed lexicon, or a larger document-set leads to higher pre-
cision of the expanded seed lexicon. Enlarging the seed lexicon or the
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document-set lets the algorithm find more occurrences, patterns and ex-
tractions. We expect this to allow our extraction scoring function to better
differentiate correct extractions from incorrect extractions.

In our experiments we vary the size of the seed lexicon between 2 and 20
terms. The document set consists of 125, 250, 500, 1000, 2000 or 4000 docu-
ments. For each of the combinations of seed lexicon size and document set size
we make 16 experiments (for each seed lexicon size there exists 4 different seed
lexicons, and for each document set size there exist 4 different document sets).

All seed lexicons are created from one of four randomly chosen sequences of
the list of Movie Title’s in Appendix A.l. From each of these four sequences a
seed lexicon of 20 elements is created. By keeping to remove the last element of
the sequence we create the seed lexicons of 19, 18, etc. elements. This allows
us to see the effect of expanding a seed lexicon with one more element. Four
sequences of document sets are created in a similar fashion.

The other user definable parameters have been kept at their default values.
This means that we use a window-size of two tokens, after each iteration expand
the seed lexicon with the single best extraction, extractions can be up to six
tokens in size, and we make up to 100 iterations. We have chosen to make 100
iterations, as a compromise between the experiments still being computably fea-
sible and making enough iterations to obtain useful results. We determined this
number from pilot experiments done during our implementation phase where
we found out that later iterations take more time than the earlier iterations. In
later iterations more occurrences, patterns and extractions have to be investi-
gated than in earlier iterations. The time later iterations take can be decreased
by implementing better caching strategies in our algorithm.

3.2.1 Evaluation Method

The standard approach of evaluation used for Information Extraction exper-
iments cannot be used. We experiment on unannotated document-sets, and
instead of calculating precision and recall over single documents, we need to
calculate precision and recall over all extractions found in the entire document-
set.

The standard approach calculates precision and recall for each single doc-
ument using the annotation layer. In our semantic lexicon expansion task, we
do not need to extract every instance from each of the documents, extracting
every instance only once is enough. If we were to use the standard approach
this leads to a too low recall.

Another problem is the evaluation of ambiguous terms, a term that is too
describe instances of different semantic categories. For example in our collection
of movie reviews, the term Go might be used as both a movie title and a verb.
Using the annotation layer to calculate precision, the former is seen as a correct
extraction while the latter is seen as an incorrect extraction. In our semantic
lexicon expansion task both extractions should be considered correct. Even if
a term, used to describe an instance of another semantic category, is extracted
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and used as a seed expansion, it is likely that the next iteration leads to that
term being extracted from a context where it is used to describe an instance of
the semantic category that is expanded.

As a solution to these problems, and to deal with the fact that we only have
unannotated documents we base our precision on a list of correct extractions.
We simply compare the extractions found by our algorithm to this list of correct
extractions.

For the semantic category Movie Title we use a list of about 700,000 movie
titles, all the movie titles and their alternative titles/synonyms known to the
Internet Movie Database. This is also the reason why we have picked Movie
Title for our baseline experiments, we do not have such a list for actor names
or certifications.

Comparing extractions to this list has two problems:

e There are more movie titles on this list than exist in our collection of
movie reviews. Terms that are never used to describe an instance of a
movie title are still seen as a correct extraction, perhaps leading to an
artificially high precision.

e There are more terms that refer to a particular instance of a movie title
than exist on our list. For example the instance Star Wars: Episode I -
The Phantom Menace is also known in our list by 27 different terms, but
the obviously correct Star Wars 1 is not one of them. Since this makes
correct extractions seen as incorrect, it will lower precision.

In Section 3.1 we found that there are approximately 870 movie titles in a
document-set of 250 reviews. Since in our baseline experiments we make a maxi-
mum of 100 iterations, the calculation of recall is problematic, but an indication
can be found in the number of correct extractions found by the algorithm, and
in Section 3.5 we experiment with continuing to iterate after iteration 100.

3.3 Results

In the beginning of Section 3.2 we anticipated that for too small seed lexicons
or document sets, the algorithm will not get past the first iterations, and that
after that point is reached using a larger set would have a positive influence
on the precision of the resulting seed expansion. Our results do not completely
reflect these anticipations.

If the algorithm is not able to get past the first iterations, it was not able to
expand the set of usable extractions after the first iteration. The set of usable
extractions are those extractions with extraction score higher than zero that
do not yet exist in the seed lexicon. The algorithm does not get past the first
iterations if it only finds a few extraction patterns, and is not able to expand
this set using the seed expansions of the first iterations. As described in Section
2.1.4, for an extraction to be considered as a seed expansion it needs to be made
by at least two patterns, that in turn are able to extract at least two different
seeds.
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Using our experiments we want to determine the minimum size of the seed
lexicon and the minimum size of the document-set that enables the algorithm
to find a real expansion for the set of extraction patterns and extractions. To
determine these numbers we will look for those experiments where the algorithm
was able to make at least 10 iterations. In our results we call such experiments
as “started iterating”. If we do not do this, and determine these numbers by the
first experiment that made at least one iteration, our results would be clouded
by experiments in which the algorithm finds only two extraction patterns which
it can not expand. Demanding at least 10 iterations solves this.

In addition to not being able to get past the first iterations for too small
document sets, we also find that it is possible for the document set to become
depleted in later iterations. This happens if the algorithm is not able to find
any new extraction patterns that lead to new extractions.

3.3.1 Size of the Document-set

To see what effect the size of the document-set has on the expanded seed lexicon
we used the experiments where the entire seed lexicon of 20 movie titles was used.
In Table 3.1 we show in what percentage of these experiments the algorithm
started iterating, the average number of iterations that the algorithm was able
to reach, and the average precision of all the seed expansions found after the
final iteration.

Document % of the Average | Avg. Avg. Nr. Avg. Prec.
-set Experiments | Iteration | Prec. | of Unused of Unused
Size started Reached Extractions | Extractions
125 0 - - - -

250 0 - - - -
500 0 - - - -
1000 50 39 0.92 - -
2000 100 100 0.94 45 0.94
4000 100 100 0.91 344.25 0.90

Table 3.1: Influence of the size of Document-set

In none of the experiments on document-sets of 500 or less reviews the
algorithm started iterating, in no experiment did the algorithm make it to the
10th iteration. Only in half of the experiments on document-sets of size 1000
the algorithm started iterating, but the maximal amount of 100 iterations was
not reached, the algorithm made either 38 or 40 iterations before stopping due
to a lack of usable extractions. The experiments on document-sets of size 2000
and 4000 all started iterating and all reached iteration 100.

The table also shows the average amount and the average precision of the
unused extractions. These extractions are the usable extractions found at iter-
ation 100, i.e. the extractions with extraction score higher than zero that do
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not exist in the seed lexicon. Combined with the number of correct extractions
in the expanded seed lexicon, the number of correct unused extractions can be
used as an indication for the recall that can be achieved were the algorithm
allowed to make it past iteration 100.

The results show that our algorithm needs a considerable amount of doc-
uments before it is able to start iterating. This is a result of our algorithm
being conservative, but also leads to precision measures of about 90 percent.
The larger the document-set becomes, the more likely it becomes for the algo-
rithm to start iterating. The amount of unused extractions for the experiments
of document-sets of 2000 or more reviews show us that there is still room for
the algorithm to continue iterating after iteration 100. In Subsection 3.5.1 we
experiment with continuing to iterate after iteration 100.

3.3.2 Size of the Seed Lexicon

Document | Minimum % of the Average | Avg. Avg. Nr. Avg. Prec.
-set Seed Size | Experiments | Iteration | Prec. | of Unused of Unused
Size Needed started Reached Extractions | Extractions
1000 12.00 50 38.88 0.92 - -

2000 8.81 100 100 0.94 43.63 0.94
4000 4.56 100 100 0.92 260.69 0.91

Table 3.2: Influence of the size of the seed lexicon

To see the effect of the size of the seed lexicon on the expanded seed lexicon,
we look at the results for those experiments where the size of the seed lexicon
was just large enough to start iterating. In Table 3.2 we show the average
minimum size of the seed lexicon, the average number of iterations that was
reached, and the average precision of those experiments.

Our results show that a seed lexicon can be too small for the algorithm to
really start iterating. The minimum size of the seed lexicon needed to start
iterating decreases for larger document-sets. In a larger document-set there are
more occurrences and patterns to be found, making it easier to find enough
extraction patterns and extractions to keep expanding the seed lexicon.

There is a large amount of variation in the minimum size of the seed lexicon
needed between the seed lexicons used in experiments on the same document-
set. The variation can be explained by looking into the seed lexicons used. The
last movie title added to the minimum seed lexicon is often a specific movie
title. This movie titles makes it possible for an extraction pattern to be found
that extracts at least two terms of the seed lexicon. For example, in three out
of four of the minimum seed lexicons used on a document-set of 1000 movie
reviews, The Sixth Sense was used as the last element of the seed lexicon. This
variation decreases for larger document-sets, where it becomes easier to find
enough extraction patterns and extractions to keep iterating the algorithm.
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Comparing these results to the results we found in the experiments where
the entire seed lexicon of 20 movie titles was used, see Table 3.1, we find that for
the document-set of 1000 movie reviews, there is no effect in enlarging the seed
lexicon. The iteration that the algorithm was able to reach, and the precision
were about equal. For the experiments on document-sets of 2000 and 4000
reviews, there is no significant change in the precision found over the first 100
iterations. Comparing the average number of usable extractions at iteration
100, we find them to be about equal for document-sets of 2000 reviews, and a
lot smaller for document-sets of 4000 reviews.

In Subsection 3.5.1 we experiment with continuing to iterate after iteration
100 for both the minimum seed lexicons we found in this section, and the entire
seed lexicon of 20 movie titles used in the experiments in Subsection 3.3.1.

3.3.3 Analysis of the Iteration Process

To get a better feeling of the iteration process we have manually inspected one
of our experiments. We have chosen to inspect one of the experiments on a
document-set of 4000 reviews, as this will also show us how many extractions
are left at iteration 100.

6000

5000 + —

4000 | - — 4

3000 | B 4

Number of Occurrences

2000 | _— 4

1000 - 4

Iteration

Figure 3.1: Total Number of Occurrences

In Figure 3.1 we show the total number of occurrences found for all terms in
the seed lexicon, and in Figure 3.2 the average number of occurrences found for
a term in the seed lexicon. Overall the average number of occurrences decreases,
indicating that the movie titles that occur more often in the document-set are
more likely to be extracted in the earlier iterations of the algorithm than less
often occurring movie titles.

In this figure there are a few points where there is a sharp increase in the
number of occurrences. The three most significant increases correspond to the
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Figure 3.2: Average Number of Occurrences

extractions Sense, Spirit and 2001 being added to the seed lexicon. These
extractions are all made from a context where they are used to refer to a movie
title, The Sizth Sense, Spirit: Stallion of the Cimmarron and 2001: A Space
Odyssey respectively. Although these three terms lead to a large amount of
occurrences, most of them not representative for the context in which movie
titles occurs, they do not lead to a large amount of new extraction patterns,
which can be seen in Figure 3.3.

The number of extraction patterns increases linearly, and there are no sharp
increases. This is a result of the seed support requirement in our algorithm.
Even though adding a single term to the seed lexicon can lead to a large increase
in the number of occurrences, these occurrences only lead to new extraction
patterns if the occurrence can also be found for another term in the seed lexicon.

In Figure 3.4 we show the total number of extractions with extraction score
greater than zero and the number of these extractions that can be used as the
seed expansion in later iterations, i.e. the number of extractions that do not
yet exist in the seed lexicon. There are still a lot of usable extractions left at
iteration 100, making it likely that the algorithm is able to keep iterating after
iteration 100. The slope of the number of usable extractions is either almost
flat, or makes a sharp increase. Since the increase in the number of extraction
patterns is fairly linear, this means that many of the extraction patterns lead to
no, or only a few previously unknown extractions, while some of the extraction
patterns enable the algorithm to reach a large set of new extractions.

In this figure we can also see that the plateaus where almost no new usable
extractions are found get larger, and the sharp increases less sharp in later iter-
ations. This indicates that after iteration 100 the number of usable extractions
is likely to reach a maximum and that after this point it starts to decrease. This
makes it possible to see the number of usable extractions that are correct as an
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100

indication for the total number of correct extractions that the algorithm is able
to reach, were it allowed to continue to iterate after iteration 100.
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Table 3.3: Best 10 extraction patterns for one of the experiments on Movie Title

Table 3.3 shows the top 10 extraction patterns used at iteration 100. The
best extraction patterns make only use of one word, the rest of the context
consists of punctuation such as , or ".

3.3.4 Analysis of our Evaluation Method

In Subsection 3.2.1 we described some possible shortcomings of our evaluation
method. We will see if these shortcomings occur by looking at the results for
our Baseline Experiments.
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Figure 3.4: Total and Usable Number of Extractions

The precision as calculated by our evaluation method can be too high, if
terms are seen as correct extractions even though they are never used in a
context to describe a movie title, or too low, if correct terms are seen as incorrect
extractions due to a slightly different spelling.

By combining the results of all our Baseline Experiments we see that a total
number of 631 different terms have been extracted. Our evaluation method
considered 573 of these 631 terms as correct extractions. To see if these terms
are indeed correct extractions, we can search in the document-sets for a context
in which the term is used to describe a movie title. We will not do this due
to being time-constraint. The other 58 terms are seen as incorrect extractions
by our evaluation method and are shown in Appendix B. We have manually
inspected these terms to see if they are indeed incorrect extractions.

Although there are some incorrect extractions on the list, the large part
of the list consists of correct extractions. Our evaluated method saw these as
incorrect extractions due to the following reasons:

e In 18 cases, a slightly different spelling than the one known for that movie
was used. For example 3,000 miles to graceland is extracted, while 3000
miles to graceland is on our evaluation list or starsky and hutch while
starsky € hutch is on our list.

e 26 cases happen because there is a difference in the tokenizer used for
our document-sets, and the one used to tokenize our evaluation list. Ap-
parently the tokenizer used on our document-sets is not able to tokenize
’s or to correctly tokenize words that end in two or more punctuation
characters. For example what?) gets tokenized to what? ) instead of the
anticipated what ? ). This difference unfortunately occurred to use in a
too late stadium to re-tokenize the document-sets used.
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e In 4 cases a referent to a movie title has been extracted. For example jade
scorpion used in a review of the curse of the jade scorpion after the movie
title has been introduced.

Taking into account that the large part of the extractions validated as in-
correct are in fact correct extractions, we find that the precision found in Table
3.1 and 3.2 is too low.

Another shortcoming of our evaluation method lies in how recall is measured.
Since we make a maximum of 100 iterations in our Baseline Experiments, it is
hard to give a measure of recall. As described in Section 3.2.1 an indication of
the possible recall that the algorithm is able to reach can be found by looking at
the number of correct extractions found at iteration 100. Although we found in
Subsection 3.3.3 that the speed at which new extractions are found decreases,
this indicator is rather unreliable. For example the algorithm might stop in
the 101th iteration due to the Stop Condition being triggered, or the algorithm
might find a new extraction pattern of high quality, enabling the algorithm to
reach a large set of previously unknown correct extractions. In Subsection 3.5.1
we experiment with continuing to iterate after iteration 100, and compare this
indicator to the total number of correct terms in the expanded seed lexicon.

3.4 Conclusions

From our experiments we found initial evidence that our hypothesis from Section
3.2 is incorrect. At least for the first 100 iterations there is no effect on precision
in enlarging the seed lexicon or the document-set. We have found that there
exists a minimum size of the seed lexicon and document set for the algorithm
to start iterating. After this minimum has been reached, there is no effect in
enlarging these sets. The minimum needed for the seed lexicon can not be
known in advance.

To keep the seed lexicon, and the amount of work a user needs to do, to a
minimum our algorithm could be encapsulated. This encapsulating loop would
ask the user to keep appending seeds to the seed lexicon until the algorithm
starts and get past the first crucial iterations.

We have found that the maximum number of iteration is too low for document-
sets that are 2000 movie reviews in size or larger. Experimenting with a larger
L will show us how the algorithm continues iterating after the 100th iteration.

By analysing the manually annotated document-set we find that the default
value for the maximum tokensize for an extraction, K = 6, is reasonable. This
size covers an estimate of 93 percent of all movie titles. We will not experiment
with other values for this user definable parameter.

3.5 Other User Definable Parameters

In Section 3.4 we have described the behaviour of our bootstrapping algorithm
using different sizes for the seed lexicon and document set. In this section we
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experiment with the other settings of our algorithm.

3.5.1 Maximal Iterations

Seed | Document % of the Average | Avg.
Size -set, Experiments | Iteration | Prec.
Size started Reached
min 1000 50 38.88 0.92
max 1000 50 39 0.92
min 2000 100 164.88 0.93
max 2000 100 187.25 0.94
min 4000 100 527.25 0.90
max 4000 100 537.00 0.89

Table 3.4: Results for dropping the constraint on the maximal iteration

In our baseline experiments, time constraints forced us to use the rather
low maximal number of iterations, L, of 100. This number proved to be large
enough for experiments on document-sets of 1000 or less movie reviews, but was
reached for each experiment on the document-sets of 2000 and 4000 reviews.

To see the effect of continuing after the 100th iteration, we have experi-
mented with the constraint on L removed. These experiments will show us
the precision and recall for expanding the semantic category Movie Title on
document-sets of size 2000 and 4000, and tell us if the average number of usable
extractions at iteration 100 is a reasonable indicator for the recall.

For each of the seed lexicons used in Subsection 3.3.1 and the minimum seed
lexicons found in Subsection 3.3.2 combined with the four document-sets of size
2000, and the four of size 4000 used in our baseline experiments we start the
algorithm, leading to a total of 64 experiments. In Table 3.4 we show the results
for these experiments. In this table we have also added the results found in our
baseline experiments for the document-sets of 1000 reviews.

The precision found over the first 100 iterations is about the same as the
precision found over all iterations. The average number of iterations reached is
slightly smaller if the minimum seed lexicon is used instead of the seed lexicon
of 20 movie titles.

As a measure of recall we show the average number of correct seed expansions
in Table 3.5. This table also shows an estimation to the average number of
correct seed expansions. This estimation is done by looking at the precision
found over the first 100 iterations, and the precision and number of usable
extractions at iteration 100, and can be used if the algorithm makes a maximum
number of 100 iterations. Using a larger document-set has a positive effect on
the number of correct terms in the seed expansion, an effect that is stronger
than the small positive effect found for using a larger seed lexicon.
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The estimation to the number of correct seed expansions is rather crude, but
is for example able to show the effect of using a larger document-set.

Seed | Document | Average Number | Average Estimated
Size -set of Correct Number of Correct
Size Seed Expansions Seed Expansions

min 1000 35.77 -

max 1000 35.88 -

min 2000 153.33 135.01

max 2000 176.02 136.30

min 4000 474.53 329.23

max 4000 477.93 400.83

Table 3.5: Number of correct terms in the seed expansion for Movie Title

In all experiments on the document-sets of 2000 reviews the algorithm stopped
iterating due to a lack of usable extractions. All, but one, experiments on the
document-sets of 4000 reviews stopped because the Stop Condition was trig-
gered. In one of the experiments on a document-set of 4000 movie reviews and
using a seed lexicon of 20 movie titles the algorithm unfortunately ran out of
memory and crashed. This happened at iteration 600. Looking at the usable
extractions at iteration 600, we find that there are several too common terms
(It, This Film, Film and The Film) amongst the highest scored extractions. It
is reasonable to assume that the Stop Condition would have been triggered in
one of the next iterations for this experiment.

3.5.2 Window Size

In our baseline experiments we used the default window-size, N, of 2. This
creates extraction patterns with two tokens in its left and right context. To see
the effect of changing the window-size we have experimented with a window-size
of one and a window-size of three tokens.

For each window-size combined with the four document-sets of size 2000, and
the four of size 4000 used in our baseline experiments we start the algorithm,
leading to a total of 16 experiments.

The algorithm is not able to start iterating, i.e. it is not able to reach at least
iteration 10, in any of the experiments. Since we use the default value of M this
means that in none of the experiments we were able to find 10 extractions. In
Table 3.6 we show the average iteration that the algorithm was able to reach,
and the average precision.

6 out of 8 experiments where a window size of one token was used where
stopped due to the Stop Condition being triggered. In the first two iterations a
too common term was chosen as the seed expansion. The other 2 experiments
had to be halted manually. In these two experiments the first iteration chose
and as the seed expansion, but the extraction chosen in the second iteration
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Window | Document | Average | Avg.
Size -set Iteration | Prec.
Size Reached
1 2000 2.50 0.81
1 4000 2.25 0.79
3 2000 0.75 0.17
3 4000 5.50 0.85

Table 3.6: Results when using different window-sizes

didn’t trigger the Stop Condition.

Using only a window-size of only one token creates too general extraction
patterns. For example, the average number of extractions found in the first
iteration is a lot higher than if a window-size of two tokens is used. For the
document-sets of 2000 reviews an average of over 8000 extractions are found (for
a window-size of two tokens about 100 extractions are found), for the document-
sets this average is over 22000 extractions (for a window-size of two tokens about
200 extractions are found).

When we use a window-size of three tokens, the algorithm stops after only
a few iterations due to a lack of usable extractions. The extraction patterns are
too specific to keep the algorithm iterating.

That our bootstrapping algorithm does not start when a window-size of only
one token is used was to be expected, there is only very little context to be used
in the extraction patterns. This is especially true for the semantic category
Mowie Title where common punctuation characters, see Table 3.3, are often
directly surrounding the movie title.

It is more of a surprise that our bootstrapping algorithm doesn’t start when
a window-size of three tokens is used. It will be possible to use a window-size
larger than two tokens if the terms of the semantic category appear in a more
structured context in the document-set, or if a larger document-set is used which
makes it more likely to find extractions that reach both the seed- and pattern
support requirement.

3.5.3 Extraction Scoring Function

Our extraction scoring function uses two requirements, the seed support and
the pattern support requirement, on the extractions that might be too strict to
get the algorithm to start, but we expect to be essential to make sure that the
algorithm does not diverge from the semantic category. To show the effect of
removing these requirements we experiment with dropping one or two of these
requirements.
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3.5.3.1 Without the Seed Support requirement

Our bootstrapping algorithm uses a Seed Support requirement of two. Only
extraction patterns that extract at least two terms of the seed lexicon are used
to find extractions. This requirement is implicitly defined in our pattern scoring
function, by the logarithm in the RlogF metric.

Dropping this requirement changes the extraction scoring function from Sec-
tion 2.1.4 into:

ExtractionScore(E;) = k=1(wploga (B 1)) if [ M > 1
0 otherwise

For the four document-sets of size 2000, and the four of size 4000 used in our
baseline experiments we start the algorithm, leading to a total of 8 experiments.

Document | Average | Avg.
-set Iteration | Prec.
Size Reached
2000 2.5 0.63
4000 2 0.50

Table 3.7: Results for expanding the semantic category Movie Title, with the
seed support requirement dropped

The results for these experiments are shown in Table 3.7. In all our ex-
periments, the Stop Condition was triggered during the first iterations of the
algorithm, because in each experiment the algorithm tried to expand the seed
lexicon with too common terms.

Dropping the seed requirement makes the algorithm find an enormous amount
of extraction patterns. The extraction patterns that extract more than one term
of the seed lexicon are only very small part of them. Many of the extraction
patterns that extract only one term of the seed lexicon are too specific and not
representative of the context in which movie titles occur. They almost always
apply to only one piece of text, the occurrence from which they have been made.
If they also apply to another piece of text this is almost certainly an incorrect
extraction.

Since our extraction scoring function uses the pattern scores of all extrac-
tion patterns, also these extraction patterns that are too specific, the effect of
the extraction patterns that extract more than one term of the seed lexicon is
diminished. This makes the extraction scoring function rank extractions mainly
on how often they occur in the document-set.

These results show that a seed support requirement of two is necessary for
the algorithm to start the bootstrapping process.
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3.5.3.2 Without the Pattern Support requirement

The Pattern Support requirement of two, required that an extraction should
be extracted by at least two extraction patterns to be considered as a seed
expansion. Dropping this requirement changes the extraction scoring function
from Section 2.1.4 into:

M’.
<, F
ExtractionScore(E;) = Z(ﬁlogg(ﬂf))
k=1

For the four document-sets of size 2000, and the four of size 4000 used in our
baseline experiments we start the algorithm, leading to a total of 8 experiments.

Document % of the Average | Avg. Avg. Nr. Avg. Prec.
-set Experiments | Iteration | Prec. | of Unused of Unused
Size started Reached Extractions | Extractions
2000 100 100 0.89 440 0.75
4000 100 100 0.83 1802.5 0.57

Table 3.8: Results for expanding the semantic category Actor Name, with the
pattern support requirement dropped

In Table 3.8 we show the results for these experiments. In all of the experi-
ments the algorithm started iterating, and all reached the maximum number of
iterations of 100 to make. Comparing these results to the results obtained in
our baseline experiments in Table 3.1 we see that there is a decrease of about 7
percent in the precision obtained over the first 100 iterations, or extractions.

The total number of usable extractions at iteration 100, an indication for
the recall that can be achieved if the algorithm were allowed to continue after
iteration 100, shows that dropping the pattern support requirement enlarges
recall considerably, but also decreases precision. This drop in precision indicates
that the algorithm is diverging from the semantic category that it is expanding.

Choosing which extraction scoring function to use depends on the task for
which the bootstrapping algorithm is used. If the algorithm is used to au-
tonomously expand a semantic lexicon the pattern support requirement should
be used to guarantee high precision, but if the algorithm is used to expand a
semantic lexicon that is reviewed by the user it might be useful to drop the
requirement to obtain a higher recall.

3.5.3.3 Without the Seed- and the Pattern Support requirement

Initially we also wanted to conduct experiments in which both requirements are
dropped. Dropping both requirements will lead to results that are worse than
the experiments above, and dropping the seed support requirement already led
to no results.
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In conclusion our algorithm benefits from both requirements, the seed sup-
port requirement is an absolute requirement to start iterating and the pattern
support requirement has a small positive effect on the precision.

3.6 Other Semantic Categories

In the previous section we have performed several experiments to determine
the general behaviour of our algorithm. In all these experiments we let the
algorithm expand the semantic category Mowie Title. In this section we use our
algorithm to find expansions for two other semantic categories, Actor Name and
Certification. This will give us an indication of how our algorithm is applicable
to other semantic categories. In these experiments we have used the same
settings for the user definable parameters as used in our baseline experiments.

3.6.1 Actor Name

The terms that are used in the semantic category Actor Name have an enormous
overlap with the terms used in the semantic category Director or Writer. Many
persons working in the movie industry have held jobs as both an actor and a
director. It will be interesting to see how our algorithm copes with semantic
categories that overlap.

The semantic category Actor Name was chosen for the experiments on other
semantic categories for having an enormous overlap with other semantic cate-
gories about people, such as example Director or Writer. It will be interesting
to see how the algorithm copes with this.

In Table 3.9 we show the results for our experiments on finding an expanded
seed lexicon for the semantic category Actor Name. We initially experimented
with a seed lexicon of 20 actor names, but since for that size the algorithm
did not start in any of the experiments we have also experimented with a seed
lexicon of size 40 and 60. The three seed lexicons are taken from the list in
Appendix A.2 with the seed lexicon of size 20 consisting of the first 20 actor
names on that list, etcetera.

For each of these seed lexicons combined with the four document-sets of size
2000, and the four of size 4000 used in our baseline experiments we start the
algorithm, leading to a total of 24 experiments.

The results show that none of the experiments using a seed size of 20 actor
names started. This in contrast with the experiments we have done for the
semantic category Mowvie Title. The average number of occurrences found in the
document-sets used is about the same for the actor names and the movie titles
in our seed lexicons. We think that actor names occur in less uniform contexts
as movie titles, and that this fact causes that it is harder for the bootstrapping
algorithm to find a good set of extraction patterns able to start expanding a
seed lexicon of actor names than it is for movie titles.

None of the experiments were stopped due to the Stop Condition being
triggered, they either stopped due to a lack of usable extractions of to the
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maximum number of iterations, L = 100, being reached.

Seed | Document % of the Average | Avg. Avg. Nr. Avg. Prec.
Size -set Experiments | Iteration | Prec. | of Unused of Unused
Size started Reached Extractions | Extractions

20 2000 0 - - - -

20 4000 0 - - - -

40 2000 0 - - -

40 4000 25 100 0.65 129

60 2000 25 12 0.5 -

60 4000 75 100 0.61 150

Table 3.9: Results for expanding the semantic category Actor Name

We manually evaluated the resulting seed expansions. This was done by one
annotator due to time constraints. An extraction is evaluated as being correct
if we can manually locate the corresponding actor in the IMDB website and if
he has been credited as an actor in at least one movie. A problem with this
measure is that persons who are mostly a director, but have also acted in one
our two movies (for example the director George Lucas played a small role in
Beverly Hills Cop IIT). Although it is technically correct to see the extraction
of such a person as correct, it is highly likely that it has been extracted from a
context where it is used as a director. The precision found in our experiments
should therefore be seen as an optimistic measure of the precision.

The precision found in our experiments is about 60 percent, which is consid-
erably lower than the precision achieved for the semantic category Mowvie Title.
Two reasons for this difference can be found by looking at the top 10 extraction
patterns found in the final iteration of one of the experiments in Table 3.10:

e Since most of the incorrect extractions are person names, it appears that
the algorithm has diverged into another semantic category containing per-
son names. The patterns in Table 3.10 show that this has indeed hap-
pened, six out of ten of the patterns are used to extract directors, indicat-
ing that the algorithm has diverged into the semantic category Director.

e Although Table 3.10 shows the best extraction patterns, the four patterns
that do not extract director are really specific. This shows us that the
algorithm is not able to use more general extraction patterns, indicating
that actor names indeed occur in less uniform contexts as movie titles.
This has a negative effect on the precision achieved by our algorithm.

Since most of the incorrect extractions are person names, it appears that the
algorithm has diverged into another semantic category containing person names.
Table 3.10 shows the top 10 extraction patterns found in the final iteration of
one of the experiments. Diverging has indeed happened, the algorithm has
diverged into the semantic category Director.
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# | Extraction Pattern

p1 | Directed by <EXTRACTION> . Screenplay
p2 | Director : <EXTRACTION> Writers :
p3 | Directed by <EXTRACTION> . Written
psa | Directed by <EXTRACTION> . Rated
ps | Cast : <EXTRACTION> , Alec

pe | Actors : <EXTRACTION> as Jack

p7 | Starring : <EXTRACTION> , Gene

ps | . Director <EXTRACTION> keeps the
P9 | directed by <EXTRACTION> , who

pio | Cast : <EXTRACTION> , Billy

Table 3.10: Best 10 extraction patterns for one of the experiments on Actor
Name

These extraction patterns also hint to a possible place for improvements.
Extraction pattern ps, pg, pr and p1g all use another actor name in the right
context. This makes these patterns very specific, they are only able to make
a few extractions. If we generalize the extraction patterns, i.e. by allowing
the extraction patterns to use semantic categories as a feature, we are perhaps
able to find extraction patterns that are more general, making the algorithm
to find more usable extractions. For example pattern p; can be generalized
to Cast : <EXTRACTION> , <ACTOR NAME>. In Chapter 4 we experiment with
generalized patterns, see especially Subsection 4.2.2 where we experiment with
expanding the semantic category Actor Name using extraction patterns where
the semantic category Actor Name itself is used as a feature in the left and right
part of the patterns.

3.6.2 Certification

Our bootstrapping algorithm is designed to expand semantic categories for
which a large number of terms can be found. For such large semantic cate-
gories, using an algorithm for the semantic lexicon expansion task is useful, as
finding all terms in a document-set is time consuming. Although for a small se-
mantic category such as Certification there is no use in solving this task, finding
all terms can simply be done by looking through a few documents, we haven
chosen to apply our algorithm to this category.

These experiments are used to give us an indication of how our algorithm
copes with semantic categories for which only a few terms exist. We are inter-
ested the precision and recall and in seeing if the algorithm stops after all terms
are found or if it keeps iterating and diverges into other semantic categories.

Most of the reviews in our document-set are from the United States, and
the rating system used in the United Stated currently uses five certifications (G,
PG, PG-13, R and NC-17.

We have experimented with a seed lexicon of three certifications (PG, R and
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NC-17) on the document-sets of size 125, 250, 500, 1000, 2000 and 4000 used in
our baseline experiments. This leads to a total of 24 experiments. Since there
only exist a few certifications we see an experiment as started to iterate if it
reaches the first iteration.

Document % of the Average | Avg. | Avg.
-set Experiments | Iteration | Prec. | Recall
Size started Reached
125 0 - - -
250 25 1 1 0
500 25 1.5 1 0.25
1000 100 2.5 1 0.75
2000 100 3.75 1 1
4000 100 5.75 0.93 1

Table 3.11: Results for expanding the semantic category Certification

In Table 3.11 we show for each document-set size which percentage of the
experiments started iterating, which iteration was reached on average, the av-
erage precision and the average recall (total recall is achieved when both G and
PG-13 are extracted). The algorithm expands the seed lexicon with all five
certifications used in the United Stated in all experiments on document-sets of
2000 or more reviews.

# | Extraction Pattern

p1 | . Rated <EXTRACTION> . Running

p2 | Rating " <EXTRACTION> " Running

p3 | Rated : <EXTRACTION> ( Nudity

ps | Classification : <EXTRACTION> ( Mature
ps | RATED : <EXTRACTION> RELEASED :

Table 3.12: Best 5 extraction patterns for one of the experiments on Certification

Table 3.12 shows the top 5 extraction patterns found in the final iteration of
one of the experiments. Table 3.13 shows all the terms of the seed expansions
that were found in our experiments. Only extraction eg and e; are incorrect
terms. Extraction es, e4 and e4 can be seen as correct, they are used to show
that a movie has not been rated, extraction eg is a certification used by the
MFCB, another motion picture rating system.

Although in each of the experiments the set of usable extractions was de-
pleted before the algorithm started to diverge, and the algorithm stopped this
should not be generalized as the behaviour to be expected when expanding any
semantic category with a limited number of members. More experiments on
semantic categories with a small number of terms are needed to show this.
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# | Extraction Text

e1 | pg-13
€2 | 8
es | nr

e4 | no mpaa rating

es | not rated

es | pg-13 for violence

e7 | pg-13 . running time : approx
es | aa

Table 3.13: All terms used as a seed expansion for Certification
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Chapter 4

Lexical and Semantic
Categories as Features

The extraction patterns that are created by our bootstrapping algorithm de-
mand a specific left and right context. Doing this keeps our extraction patterns
highly specific, the patterns have high precision but also low recall. As we use
multiple extraction patterns to come up with a set of extractions, having low re-
call over a single extraction pattern is ok, but it might be possible to generalize
extraction patterns in a way that enlarges their recall without decreasing their
precision. We expect this to also increase the quality of the resulting expanded
seed lexicon in terms of precision and recall. Using extraction patterns that are
better tuned to the contexts in which the seed lexicon occurs will lead to higher
precision, and enlarging the recall of the single extraction patterns will have a
positive effect on the recall of the entire algorithm.

As an example of a pattern that can be generalized we encountered the pat-
tern Review... > <EXTRACTION> ( 2000 while analysing one of our baseline
experiments (see Table 3.3 in Section 3.3.3). This pattern uses a year in the
second token of its right context. The generalized pattern
Review... ’> <EXTRACTION> ( <YEAR> that applies to all years instead of only
to the year 2000 is likely to find more extractions while keeping the ratio between
correct and incorrect extractions equal.

To create generalized extraction patterns, we allow our algorithm to make
use of lexical- and semantic categories as a feature in the left and right context of
an extraction pattern. The part of the extraction pattern where such a feature
is used will match every element of that category instead of a specific token.

The lexical categories, and the elements belonging to them can be defined
by the user. For example a lexical category can be defined to group together
years, or to group together certain punctuation characters. In the same fashion,
the semantic category that is being expanded, or another semantic category in
the semantic lexicon, can be used to create generalized extraction patterns.

To implement the use of these features in our algorithm we have chosen
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to change how patterns (see Subsection 2.1.2) and extractions (see Subsection
2.1.3) are created. In addition to the set of non-generalized extraction patterns,
we let our algorithm create a second set of extraction patterns, the generalized
extraction patterns.

The set of generalized extraction patterns is created from the set of non-
generalized extraction patterns. For each non-generalized extraction pattern in
which an element of one of the lexical- or semantic categories exists, a copy is
made. This copy is then maximally generalized, each of the possible general-
izations are made. For example if two lexical categories were defined, one that
groups together the quotation characters > and ", and one that groups together
years, next to the pattern Review... > <EXTRACTION> ( 2000 the algorithm
will now create the pattern Review... <QUOTATION> <EXTRACTION> ( <YEAR>.

Because we create our generalized extraction patterns next to our non-
generalized extraction patterns, we in effect create two extraction patterns for
each occurrence that can be generalized. In our extraction scoring function we
used a pattern support requirement of 2 patterns. If we do not use a differ-
ent extraction scoring function in our experiments with generalized patterns,
every pattern that can be generalized will directly pass our pattern support
requrement. So that we can compare the results for these experiments to those
obtained in our baseline experiments, we have changed the pattern support
requirement to 2 non-generalized extraction patterns.

Another Information Extraction algorithm that generalizes a set of extrac-
tion patterns is RAPIER (see [1998] and [2003]).
RAPIER randomly selects two extraction patterns and generalizes these into
a new extraction pattern. If this extraction pattern is acceptable, the new pat-
tern is added and the patterns subsumed by it are removed from the set of
extraction patterns. To generalize two patterns, RAPIER first generalizes the
middle part of the pattern, used to make extractions, and then specializes the
left and right part until the pattern stops making incorrect extractions.

Although the approach of RAPIER is a better method of generalizing, we
are more interested in seeing if generalizing patterns enables the algorithm to
achieve better recall measures than we are in finding the best method of gener-
alization. Apart from this motivation, RAPIER uses negative examples to find
the right amount of generalization and assumes that all positive examples exist-
ing in the document-set are known. Since our algorithm works on unannotated
document-sets and uses bootstrapping, it does not have negative examples and
only a subset of the positive examples at its disposal, making it hard to use this
approach.

4.1 Lexical Features

Our initial experiments with using features are focused on finding out the be-
haviour of our algorithm using lexical categories as features. We have used a
list of four different lexical categories:

e (Quotation, which matches > and ".
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e Punctuation, which matches .!7,; and :
e Bracket, which matches () [J{}< and >

e Year, which matches all strings of 4 decimals between 1900 and 2006.

4.1.1 Movie Title

For the four document-sets of size 2000, and the four of size 4000 used in our
baseline experiments we start the algorithm, leading to a total of 8 experiments.

Document % of the Average | Avg. Avg. Nr. Avg. Prec.
-set Experiments | Iteration | Prec. | of Unused of Unused
Size started Reached Extractions | Extractions
2000 100 100 0.94 51 0.91
4000 100 100 0.91 333 0.91

Table 4.1: Results for expanding the semantic category Movie Title using lexical
categories as features

In Table 4.1 we show the results for these experiments. Compared to the
results obtained for the baseline experiments in Table 3.1 we see no significant
change.

This happens because we made a mistake in changing our pattern support re-
quirement. We changed this requirement from requiring two extraction patterns
into requiring two non-generalized extraction patterns. Although this makes it
possible to compare our results to those obtained in the baseline experiments,
the requirement makes it impossible for a generalized extraction pattern to be
really used. For example if an extraction e was not extracted by p, but was
extracted by pg and the generalized version of p, the pattern support require-
ment is not reached, although we would like our algorithm to use extraction e.
Generalized extraction patterns will therefore not lead to new extractions being
found, the only effect they will have is an increase in the extraction score of ex-
tractions for which the pattern support requirement is met. Due to this mistake
in changing our patterns support requirement we do not see the anticipated pos-
itive effect on the recall of our algorithm. Time-constraints unfortunately force
us not to correct this mistake, both the implementation process of changing the
extraction scoring function and re-running the experiments in this chapter will
take too much time.

We can however manually inspect the generalized extraction patterns to see
if it is plausible that these extractions will have a positive effect on the recall.
In Table 4.2 we show a few of the highest scored generalized extraction patterns
found in these experiments. Ranking all extraction patterns by their pattern
score, we find that the generalized version of an extraction pattern generally
appears slightly below the non-generalized version. This happens because a
generalized extraction pattern makes more extractions than a non-generalized
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# | Extraction Pattern

p1 | <PUNCTUATION> <QUOTATION> <EXTRACTION> <QUOTATION> is
p2 | Review... <QUOTATION> <EXTRACTION> <BRACKET> <YEAR>

ps | <PUNCTUATION> <QUOTATION> <EXTRACTION> <QUOTATION> does
pg | <BRACKET> <QUOTATION> <EXTRACTION> <QUOTATION> does

ps | of <QUOTATION> <EXTRACTION> <QUOTATION> <BRACKET>

Table 4.2: A few generalized extraction patterns using Lexical Categories found
for expanding Movie Title

extraction pattern, and because the pattern score is mostly based on the ratio
between terms in the seed lexicon and the total number of extractions. If the
seed lexicon is small, it is likely that generalizing a pattern will make it find
more new extractions unknown to the seed lexicon than new extractions known
to the seed lexicon.

4.1.2 Actor Name

The experiments in expanding the semantic category Actor Name using Lexical
Features in the generalized extraction patterns use the same seed lexicons and
document-sets that were used in Subsection 4.2.2.

Seed | Document % of the Average | Avg. Avg. Nr. Avg. Prec.
Size -set Experiments | Iteration | Prec. | of Unused of Unused
Size started Reached Extractions | Extractions
20 2000 0 - - - -
20 4000 0 - - - -
40 2000 0 - - - -
40 4000 0.25 100 0.65 130 0.57
60 2000 0.25 12 0.50 - -
60 4000 0.75 100 0.64 149.67 0.59

Table 4.3: Results for expanding the semantic category Actor Name using lexical
features

In Table 4.3 we show the results for these experiments. Compared to the
results obtained for the baseline experiments in Table 3.9 we see no significant
change. This happens for the same reason as described in Subsection 4.1.1. In
Table 4.4 we show a few examples of generalized extraction patterns.

4.2 Using Semantic Categories as Features

Semantic categories can also be used as a feature in the extraction patterns. In
this section we use the semantic category that the algorithm is expanding as a
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# | Extraction Pattern

p1 | Director <PUNCTUATION> <EXTRACTION> Writers <PUNCTUATION>
p2 | Director <PUNCTUATION> <EXTRACTION> Starts <PUNCTUATION>
p3 | Starring <PUNCTUATION> <EXTRACTION> <PUNCTUATION> Gene

p4 | Thurman <PUNCTUATION> <EXTRACTION> <PUNCTUATION> Tim

ps | Tyler <PUNCTUATION> <EXTRACTION> <PUNCTUATION> Will

Table 4.4: A few generalized extraction patterns using Lexical Categories found
for expanding Actor Name

feature. If a term of the seed lexicon occurs in the left or right context of an
occurrence, the algorithm creates a generalized extraction pattern that can be
applied to each term of the seed lexicon. In later iterations these generalized
extraction patterns are likely able to make more extractions than in earlier
iterations, since having more terms in the seed lexicon makes these patterns
more general.

Especially for the semantic category Actor Name we think that using se-
mantic categories as a feature can lead to improvements. In Subsection 4.2.2 we
noticed that the extraction patterns used in the experiments for the semantic
category Actor names often used the name of another actor in the left and/or
right context. This happens because in our document-sets actor names often
occur in lists (for example ... Starring Tobey Maguire, Reese Witherspoon).
Generalized patterns that use Actor Name as a feature can be helpful to our
algorithm, as the order and elements on these lists vary.

4.2.1 Movie Title

For the four document-sets of size 2000, and the four of size 4000 used in our
baseline experiments we start the algorithm, leading to a total of 8 experiments.

Document % of the Average | Avg. Avg. Nr. Avg. Prec.
-set, Experiments | Iteration | Prec. | of Unused of Unused
Size started Reached Extractions | Extractions
2000 100 100 0.94 45 0.94
4000 100 100 0.91 344.25 0.90

Table 4.5: Results for expanding the semantic category Movie Title using Mowvie
Title as a Feature

As in Subsection 4.1.1 we find no significant change compared to the re-
sults obtained for the baseline experiments in Table 3.1. This happens for the
same reason as described in that section. Where in the results where Lexical
Categories where used as a feature generalized extraction patterns occurred in
each of the experiments, here we find only a few in only one of the experiments.
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Apparently movie titles do not often occur in close context to each other in our
document-sets. In Table 4.6 we show the three generalized extraction patterns
found in this single experiment.

# | Extraction Pattern

p1 | <SEMANTIC_CATEGORY> , <EXTRACTION> and <SEMANTIC_CATEGORY>
p2 | <SEMANTIC_CATEGORY> , <EXTRACTION> , and

p3 | <SEMANTIC_CATEGORY> , <EXTRACTION> , The

Table 4.6: The three generalized extraction patterns found for expanding Actor
Name while using the semantic category Mowvie Title as a feature

4.2.2 Actor Name

The experiments in expanding the semantic category Actor Name using Lexical
Features in the generalized extraction patterns use the same seed lexicons and
document-sets that were used in Subsection 4.2.2.

Seed | Document % of the Average | Avg. Avg. Nr. Avg. Prec.
Size -set Experiments | Iteration | Prec. | of Unused of Unused
Size started Reached Extractions | Extractions
20 2000 0 - - - -
20 4000 0 - - - -
40 2000 0 - - - -
40 4000 0.25 100 0.64 150 0.58
60 2000 0.25 12 0.5 - -
60 4000 0.75 100 0.62 155.33 0.59

Table 4.7: Results for expanding the semantic category Actor Name using Actor
Name as a Feature

Compared to the results obtained for the baseline experiments in Table 3.9,
the results in Table 4.7 show no significant change. This happens for the same
reason as described in Subsection 4.1.1.

In Table 4.8 we show a few examples of generalized extraction patterns. In
contrast to the experiments the semantic category Movie Title was used as a
feature, here we find generalized extraction patterns in each of the experiments.
Combined these generalized extraction patterns make it possible to extract the
actor names in lists like Starring: Joseph Gordon-Levitt, Danny Glover, Christo-
pher Lloyd, Brenda Fricker, and Tony Danza. Pattern ps is an example of a
generalized extraction pattern that will be generalized into ps once the actress,
probably Liv Tyler, gets used as a seed expansion.

Instead of using the semantic category that is expanded as a feature, another
possibility would be to use a different semantic category as a feature. If the
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# | Extraction Pattern

p1 | Cast : <EXTRACTION> , <SEMANTIC_CATEGORY>

p2 | Starring : <EXTRACTION> , <SEMANTIC_CATEGORY>

p3 | <SEMANTIC_CATEGORY> , <EXTRACTION> , <SEMANTIC_CATEGORY>
P4 | <SEMANTIC_CATEGORY> , <EXTRACTION> , and

p5 | <SEMANTIC_CATEGORY> , <EXTRACTION> , Liv

Table 4.8: A few generalized extraction patterns using Lexical Categories found
for expanding Actor Name

algorithm is first used to expand a seed lexicon for one semantic category, the
expanded seed lexicon can be used as a feature while expanding another semantic
category. If the terms of the two semantic categories appear close together in
the document-set, the algorithm will find generalized extraction patterns. We
have chosen not to experiment with this, as the mistake made in designing the
extraction scoring function will also make these experiments show no significant
change compared to the baseline experiments.

In none of the experiments using lexical- or semantic categories as features
were we able to show a significant change in precision or recall compared to the
results found in our baseline experiments. Although, especially when using the
semantic category Actor Name as a feature while expanding a seed lexicon of
actor names, the algorithm is able to find interesting and promising generaliza-
tions a mistake in designing the extraction scoring function makes it impossible
for these generalizations to be of real use.
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Chapter 5

Discussion & Conclusion

In the previous chapters we have introduced and evaluated our bootstrapping
algorithm for semantic lexicon expansion. Our bootstrapping algorithm differs
from the other bootstrapping algorithm described in Section 1.5 in that it uses
simple extraction patterns, which only make use of the syntax in a small context
window. Our algorithm does not use named-entity recognition or other sentence
analysation. This keeps our algorithm language independent and applicable
to semi-structured texts. Instead of using only a small number of extraction
patterns, our algorithm uses the entire set of extraction patterns to find the
expanded seed lexicon.

To be able to do this we have introduced an extraction scoring function
that is able to use the entire set of extraction patterns. Our extraction scoring
function is based on the proven pattern scoring function used by both

[1999] and [200].

Our research describes the implicit seed support requirement the pattern
scoring function of the algorithm, and introduces a pattern support requirement.
Instead of using a stop list of common words that are not to be used in the seed
expansion, our algorithm uses a stop condition.

With the results of our experiments on expanding the semantic category
Movwie Title and Actor Name we have given further evidence that it is possible
to perform corpus-based Information Extraction tasks, such as semantic lexicon
expansion, using a document-set consisting solely of unannotated documents.
The use of bootstrapping allows our algorithm to find more extraction patterns
and extractions than that are possible to find if only a single iteration is made.

Our algorithm is able to reach a precision of about 90 percent for expanding
the semantic category Movie Title on a document-set of movie reviews. For the
semantic category Actor Name we find a precision of about 60 percent. This
difference can be explained by movie titles occurring in more structured contexts
than actor names, which makes the precision of our algorithm dependent on the
amount of structure in the contexts around the terms of the semantic category
that is expanded.

The recall of our algorithm is relatively low. Using the default values for the
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user definable parameters, we were able to recall only about 475 different movie
titles whereas we found that there already appear over 850 different movie titles
in a document-set of 250 reviews. We were unable to recall a larger amount
of movie titles by tweaking our algorithm, the default values are the optimal
settings for our document-set. Due to being time-constrained we were only able
to let our algorithm make 100 iterations in many of our experiments. For these
experiments we had to resort to an estimation of the number of correct terms in
the seed expansion as a rather crude indication of the recall. As with precision,
we also found a lower recall for actor names than for movie titles.

By applying our bootstrapping algorithm to increasing sizes of seed lexicons
we found that there exists a minimum amount of terms needed to start iterating.
After this minimum number is reached, there is no effect on the precision and
only a slight positive effect on the recall. This effect was shown for both the
semantic category Mowvie Title and Actor Name. The effect on the recall can be
explained by the new terms in the seed lexicon leading to extraction patterns
that otherwise could not have been found. The stark difference in behaviour of
our algorithm between using a seed lexicon just below the minimum size and
a seed lexicon at the minimum size can be explained by the use of our pattern
support requirement. For too small seed lexicons, this requirement makes it
impossible to find enough reliable extractions to expand the seed lexicon.

It is not possible to determine the minimum amount of terms in the seed
lexicon needed to get the algorithm to start. The number depends on the
amount of redundancy in both those the terms of the semantic category that
is to be expanded, the context in which those terms occur and on which exact
terms are chosen in the seed lexicon. The minimum amount of terms can be
decreased by using prototypical examples of the semantic category (which are
more likely to occur in a document-set) or by using a larger document-set.

Encapsulating our algorithm in a loop that asks a user to keep adding seeds
to the seed lexicon until the minimum size is reached, allows a user to expand a
semantic lexicon with as little effort as possible. We can do this because we are
able to tell if the minimum size is reached or not when running our algorithm,
and since there is no effect on the precision, and only a small effect on the recall
in expanding the seed lexicon after this point.

The document-set also has to have a minimum-size for the algorithm to start
iterating. In our experiments we found that for our experiments on expanding
the semantic category Movie Title we had to use at least a document-set of
1000 movie reviews. Increasing the size of the document-set has no effect on the
precision of the resulting expanded seed lexicon. There is a strong positive effect
on the recall that appears to be linear in our experiments. We anticipate however
that this effect starts to slow down for larger document-sets, in larger document-
sets it becomes less likely for each document to contain a movie title, or actor
name that was not yet encountered in previous documents. The implementation
of our algorithm however makes it too time consuming to experiment with our
algorithm on significantly larger document-sets.

Changing the size of the context window used by our extraction patterns
has an enormous effect. Only for a window-size of two tokens is our algorithm

99



able to find an expanded seed lexicon.

Diverging from the semantic category that is expanded can happen with our
algorithm. We have seen that our Stop Condition is able to stop the algorithm
when it starts to diverge due to too common terms, but diverging into an over-
lapping semantic category will occur as we saw for the semantic category Actor
Name and its overlapping category Director.

The problem of only having incorrect extractions left to use as the seed
expansion, described in Subsection 2.1.5, did not occur in our experiments.
There is no real decrease in precision in later iterations, which is probably due
to our pattern support requirement. This requirement is so strict that there are
simply not too many incorrect extractions in the lower regions of the extraction
score. The algorithm either stops due to being the extractions being depleted
or due to the Stop Condition being triggered.

Being able to stop iterating when all the terms in the semantic category are
found was shown for the semantic category Certification, but further research
has to show how general this behaviour is.

If we drop the seed support requirement from our extraction scoring function,
the algorithm immediately diverges and is stopped by our Stop Condition. The
pattern support requirement can be dropped to get an increase in recall at the
cost of a decrease in precision.

In Chapter 4 we experimented with generalizing our extraction patterns. Al-
though, due to a faulty designed pattern support requirement, we were unable
to find the expected higher recall or any other significant results, the general-
ized extraction patterns that were found do however show promise for future
research.

The document-set of movie reviews used in our experiments has, to our
knowledge, not been used in other research on expanding semantic lexicons.
Comparing our algorithm to the results of other algorithms has not been done.
We see it as future research to make this comparison, either by applying our
algorithm to the document-sets used in other research, or by implementing other
algorithms and applying them to our set of movie reviews.

5.1 Further Research

Currently there is no generic method for keeping the algorithm from diverging,
only a Stop Condition is used to keep it from diverging into adding too common
terms. This Stop Condition can be improved by letting the algorithm skip over
too common terms instead of stopping the algorithm if too common terms are
selected as the seed expansion. Since this allows the algorithm to make more
iterations, it will possibly lead to a higher recall. To implement this using
the Stop Condition currently used by our algorithm, the algorithm should be
allowed to backtrack O iterations, and disallowed to use the too common terms
found by our Stop Condition in the seed expansion.

Another possibility is to look at the occurrences and patterns that will be
found in the next iteration, if a certain extraction is used as the seed expan-

60



sion. Doing this allows the algorithm to skip extractions for which too many
occurrences and patterns will be found, an indication for seed expansion that
will make the algorithm diverge into adding too common terms.

If this is done for all extractions found by the algorithm, it can be incorpo-
rated into the extraction scoring function and used to keep the algorithm from
diverging into overlapping semantic categories. The extraction scoring should
be modified to give a lower score to more ambiguous terms. A possible way of
doing this is to look at the extraction patterns found for the extraction, a more
ambiguous extraction will lead to extraction patterns that have less overlap with
the extraction patterns found up to that point. Doing this will significantly de-
crease the speed of our algorithm.

In our research we used the default value for M of using one extraction as
the seed expansion. If increasing M does not hamper the quality of the resulting
expanded seed lexicon, it can be used to get the same recall using less iterations,
and speed up our algorithm. A better option would be to use a threshold on the
extraction score instead of a constant number to determine which extractions
should be used as the seed expansion.

Our algorithm is currently able to apply two extraction patterns to the same
tokens. For example . Starring <EXTRACTION> , and and
Starring : <EXTRACTION> , and, applying this pattern to
. Starring : Ben Stiller, and would let the former pattern extract
: Ben Stiller while the latter extracts Ben Stiller. Only allowing the more
specific pattern, in this case the latter pattern since it extracts less tokens, to
make the extraction might improve the quality of the expanded seed lexicon.
The implementation of our algorithm does not allow us to easily implement this.

Our extraction patterns make extractions up to K tokens, a user definable
number. Perhaps this number can be set automatically by setting K to one
more than the number of tokens of the largest term in the seed lexicon of the
iteration. This technique is employed by RAPIER, (see [ ]
and [ D.

In our experiments on generalized extraction patterns we were only able to
show that the algorithm indeed found generalized extraction patterns that used
lexical- and semantic categories as features. Further research on changing the
extraction scoring function to let the algorithm make use of these generalized
extraction patterns needs to be done to see if generalizing extraction patterns
has a positive effect on the quality of the expanded seed lexicon.

The evaluation method used in our experiments had to make use of external
lists of correct terms to calculate precision and recall. We had to do this since
the document-set of movie reviews was unannotated. If our document-set was
an annotated document-set, we could run our algorithm on the document-set
with the annotation layer removed, and use the annotation layer to evaluate
the algorithm. This makes it possible to create lists of correct terms, that only
contain terms if they are really used in the document-set in the context of the
semantic category, and will give use correcter measures of precision and recall.
The annotation layer can also help in evaluating the extraction patterns found-,
and pattern scoring function used by our algorithm, since it tells us where terms
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are used in the context of our semantic category and where they are used in a
different context.

62



Appendix A

Master Seed Lexicons

A.1 DMovie Title

All experiments that expand the semantic category Movie Title start with a
semantic lexicon that is a subset of the list in Table A.1 below. The movies
on this list are chosen on the fact that they are blockbusters from the years in
which most of the reviews in our document-set have been written.

To create this selection of movie titles we have used the IMDB movie pages
to which most of the reviews are linked. First we sorted all those linked IMDB
movie pages in decreasing number of reviews to find out the movies that were
reviewed the most. The best 40 movie titles were then sorted according to
decreasing number of occurrences (in the movie review set of 40,000 reviews),
after which the best 20 movie titles were used for the master seed lexicon. This
was done to remove movie titles are written in many different ways (such as star
wars : episode 1 - the phantom menace).

This method of selecting a seed lexicon leads to a seed lexicon of often
occurring movie titles, just as would probably happen if a user is asked to create
a seed lexicon. A user will most likely come up with prototypical examples of
movie titles, which will often occur in our document-set.

A.2 Actor Names

The list of 60 actor names in Table A.2 is created by taking all the actor names
in our annotated movie review document set. These actor names were then
sorted according to decreasing number of occurrences (in the movie review set
of 40,000 reviews) after which the top 60 were used.
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S1 contact

so | the game

s3 | godzilla

s4 | titanic

S5 | the matrix

s¢ | armageddon

s7 | saving private ryan
sg | fight club

Sg | the truman show
$10 | american beauty
s11 | the sixth sense

s12 | the blair witch project
s13 | men in black

$14 | the mummy

s15 | deep impact

s16 | starship troopers
s17 | dark city

s1s | eyes wide shut

s19 | lost in space

sog | l.a . confidential

Table A.1: Master Seed Lexicon for the Mowvie Title category
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S1
52
S3
S4
S5
S6
S7
S8
S9
S10
S11
512
513
S14
S15
516
S17
S18
S19
520

bruce willis

tom hanks

robin williams
jim carrey

julia roberts

tom cruise

ben affleck
samuel 1 . jackson
anthony hopkins
harrison ford
eddie murphy
kevin spacey
denzel washington
matt damon

john cusack
keanu reeves
johnny depp

gene hackman
christopher walken
nicolas cage

S21
522
523
524
525
526
S27
528
529
530
531
532
533
534
535
536
837
538
539
540

george clooney
adam sandler
robert de niro
james woods
bob thornton
sean connery
morgan freeman
billy bob thornton
meg ryan

jack nicholson
sandra bullock
al pacino
gwyneth paltrow
drew barrymore
steve buscemi
robert duvall
william h . macy
cameron diaz
danny devito
edward norton

S41
542
543
S44
S45
S46
S47
548
S49
550
S51
552
S53
554
555
556
S57
S58
S59
560

nicole kidman
tim robbins
kevin costner
spike lee

liam neeson
john goodman
dustin hoffman
bill paxton
ewan mcgregor
ed harris

uma thurman
hugh grant
mike myers
sharon stone
russell crowe
richard gere
harvey keitel
winona ryder
kenneth branagh
geoffrey rush

Table A.2: Master Seed Lexicon for the Actor Name category
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Appendix B

Extractions evaluated as
incorrect
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0 O Ui Wi

2001

3,000 miles to graceland
48 hrs.

a bug’s life

a.i.

a.i. : artificial intelligence
arthur 2

big momma’s house
blade 2

blood simple

bridget jones’s diary
charlie’s angels

charlie’s angels : full throttle
child’s play

city

day after

disney’s the kid
dungeons & dragons,
felicia’s journey

forces

geniuses

goodbye , lover

happy texas

harrison’s flowers

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

harry potter and the sorcerer’s stone | 54

hart’s war
hey arnold! the movie
hfd

i married a strange person!

55
56
57
58

it was always me

jade scorpion

kids in the hall

little boy blue,

manny and lo

no man’s land

nutty professor ii

o brother , where art thou?
penn & teller : bullshit!
peter’s friends

ricidule

schindler’s list

scooby-doo 2 : monsters unleashed
she’s all that

shiloh 2

smell of camphor

starsky and hutch

the black cat,

the blue dog

the godfather part ii

the imposters

the razor’s edge

the x-files : fight the future
tupac resurrection

ulfc

what?

who killed atlanta’s children?
win a date with tad hamilton
your friends and neighbors

Table B.1: Extractions evaluated as incorrect extractions
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